File size: 6,313 Bytes
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164c335
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164c335
 
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164c335
 
dbac20f
164c335
 
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from typing import Literal, Optional

import open_clip
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from open_clip import create_model_from_pretrained
from torchvision.transforms import Normalize

from mmaudio.ext.autoencoder import AutoEncoderModule
from mmaudio.ext.mel_converter import MelConverter
from mmaudio.ext.synchformer import Synchformer
from mmaudio.model.utils.distributions import DiagonalGaussianDistribution


def patch_clip(clip_model):
    # a hack to make it output last hidden states
    # https://github.com/mlfoundations/open_clip/blob/fc5a37b72d705f760ebbc7915b84729816ed471f/src/open_clip/model.py#L269
    def new_encode_text(self, text, normalize: bool = False):
        cast_dtype = self.transformer.get_cast_dtype()

        x = self.token_embedding(text).to(cast_dtype)  # [batch_size, n_ctx, d_model]

        x = x + self.positional_embedding.to(cast_dtype)
        x = self.transformer(x, attn_mask=self.attn_mask)
        x = self.ln_final(x)  # [batch_size, n_ctx, transformer.width]
        return F.normalize(x, dim=-1) if normalize else x

    clip_model.encode_text = new_encode_text.__get__(clip_model)
    return clip_model


class FeaturesUtils(nn.Module):

    def __init__(
        self,
        *,
        tod_vae_ckpt: Optional[str] = None,
        bigvgan_vocoder_ckpt: Optional[str] = None,
        synchformer_ckpt: Optional[str] = None,
        enable_conditions: bool = True,
        mode=Literal['16k', '44k'],
        need_vae_encoder: bool = True,
    ):
        super().__init__()

        if enable_conditions:
            self.clip_model = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384',
                                                           return_transform=False)
            self.clip_preprocess = Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
                                             std=[0.26862954, 0.26130258, 0.27577711])
            self.clip_model = patch_clip(self.clip_model)

            self.synchformer = Synchformer()
            self.synchformer.load_state_dict(
                torch.load(synchformer_ckpt, weights_only=True, map_location='cpu'))

            self.tokenizer = open_clip.get_tokenizer('ViT-H-14-378-quickgelu')  # same as 'ViT-H-14'
        else:
            self.clip_model = None
            self.synchformer = None
            self.tokenizer = None

        if tod_vae_ckpt is not None:
            self.tod = AutoEncoderModule(vae_ckpt_path=tod_vae_ckpt,
                                         vocoder_ckpt_path=bigvgan_vocoder_ckpt,
                                         mode=mode,
                                         need_vae_encoder=need_vae_encoder)
        else:
            self.tod = None
        self.mel_converter = MelConverter()

    def compile(self):
        if self.clip_model is not None:
            self.clip_model.encode_image = torch.compile(self.clip_model.encode_image)
            self.clip_model.encode_text = torch.compile(self.clip_model.encode_text)
        if self.synchformer is not None:
            self.synchformer = torch.compile(self.synchformer)
        self.decode = torch.compile(self.decode)
        self.vocode = torch.compile(self.vocode)

    def train(self, mode: bool) -> None:
        return super().train(False)

    @torch.inference_mode()
    def encode_video_with_clip(self, x: torch.Tensor, batch_size: int = -1) -> torch.Tensor:
        assert self.clip_model is not None, 'CLIP is not loaded'
        # x: (B, T, C, H, W) H/W: 384
        b, t, c, h, w = x.shape
        assert c == 3 and h == 384 and w == 384
        x = self.clip_preprocess(x)
        x = rearrange(x, 'b t c h w -> (b t) c h w')
        outputs = []
        if batch_size < 0:
            batch_size = b * t
        for i in range(0, b * t, batch_size):
            outputs.append(self.clip_model.encode_image(x[i:i + batch_size], normalize=True))
        x = torch.cat(outputs, dim=0)
        # x = self.clip_model.encode_image(x, normalize=True)
        x = rearrange(x, '(b t) d -> b t d', b=b)
        return x

    @torch.inference_mode()
    def encode_video_with_sync(self, x: torch.Tensor, batch_size: int = -1) -> torch.Tensor:
        assert self.synchformer is not None, 'Synchformer is not loaded'
        # x: (B, T, C, H, W) H/W: 384

        b, t, c, h, w = x.shape
        assert c == 3 and h == 224 and w == 224

        # partition the video
        segment_size = 16
        step_size = 8
        num_segments = (t - segment_size) // step_size + 1
        segments = []
        for i in range(num_segments):
            segments.append(x[:, i * step_size:i * step_size + segment_size])
        x = torch.stack(segments, dim=1)  # (B, S, T, C, H, W)

        outputs = []
        if batch_size < 0:
            batch_size = b
        x = rearrange(x, 'b s t c h w -> (b s) 1 t c h w')
        for i in range(0, b * num_segments, batch_size):
            outputs.append(self.synchformer(x[i:i + batch_size]))
        x = torch.cat(outputs, dim=0)
        x = rearrange(x, '(b s) 1 t d -> b (s t) d', b=b)
        return x

    @torch.inference_mode()
    def encode_text(self, text: list[str]) -> torch.Tensor:
        assert self.clip_model is not None, 'CLIP is not loaded'
        assert self.tokenizer is not None, 'Tokenizer is not loaded'
        # x: (B, L)
        tokens = self.tokenizer(text).to(self.device)
        return self.clip_model.encode_text(tokens, normalize=True)

    @torch.inference_mode()
    def encode_audio(self, x) -> DiagonalGaussianDistribution:
        assert self.tod is not None, 'VAE is not loaded'
        # x: (B * L)
        mel = self.mel_converter(x)
        dist = self.tod.encode(mel)

        return dist

    @torch.inference_mode()
    def vocode(self, mel: torch.Tensor) -> torch.Tensor:
        assert self.tod is not None, 'VAE is not loaded'
        return self.tod.vocode(mel)

    @torch.inference_mode()
    def decode(self, z: torch.Tensor) -> torch.Tensor:
        assert self.tod is not None, 'VAE is not loaded'
        return self.tod.decode(z.transpose(1, 2))

    @property
    def device(self):
        return next(self.parameters()).device

    @property
    def dtype(self):
        return next(self.parameters()).dtype