Rex Cheng
initial commit
dbac20f
raw
history blame
15 kB
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition
"""Video models."""
import math
import torch
import torch.nn as nn
from einops import rearrange, repeat
from timm.layers import to_2tuple
from torch import einsum
from torch.nn import functional as F
default_cfgs = {
'vit_1k':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
'vit_1k_large':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
}
def qkv_attn(q, k, v, tok_mask: torch.Tensor = None):
sim = einsum('b i d, b j d -> b i j', q, k)
# apply masking if provided, tok_mask is (B*S*H, N): 1s - keep; sim is (B*S*H, H, N, N)
if tok_mask is not None:
BSH, N = tok_mask.shape
sim = sim.masked_fill(tok_mask.view(BSH, 1, N) == 0,
float('-inf')) # 1 - broadcasts across N
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
return out
class DividedAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
# init to zeros
self.qkv.weight.data.fill_(0)
self.qkv.bias.data.fill_(0)
self.proj.weight.data.fill_(1)
self.proj.bias.data.fill_(0)
self.attn_drop = nn.Dropout(attn_drop)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, einops_from, einops_to, tok_mask: torch.Tensor = None, **einops_dims):
# num of heads variable
h = self.num_heads
# project x to q, k, v vaalues
q, k, v = self.qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
if tok_mask is not None:
# replicate token mask across heads (b, n) -> (b, h, n) -> (b*h, n) -- same as qkv but w/o d
assert len(tok_mask.shape) == 2
tok_mask = tok_mask.unsqueeze(1).expand(-1, h, -1).reshape(-1, tok_mask.shape[1])
# Scale q
q *= self.scale
# Take out cls_q, cls_k, cls_v
(cls_q, q_), (cls_k, k_), (cls_v, v_) = map(lambda t: (t[:, 0:1], t[:, 1:]), (q, k, v))
# the same for masking
if tok_mask is not None:
cls_mask, mask_ = tok_mask[:, 0:1], tok_mask[:, 1:]
else:
cls_mask, mask_ = None, None
# let CLS token attend to key / values of all patches across time and space
cls_out = qkv_attn(cls_q, k, v, tok_mask=tok_mask)
# rearrange across time or space
q_, k_, v_ = map(lambda t: rearrange(t, f'{einops_from} -> {einops_to}', **einops_dims),
(q_, k_, v_))
# expand CLS token keys and values across time or space and concat
r = q_.shape[0] // cls_k.shape[0]
cls_k, cls_v = map(lambda t: repeat(t, 'b () d -> (b r) () d', r=r), (cls_k, cls_v))
k_ = torch.cat((cls_k, k_), dim=1)
v_ = torch.cat((cls_v, v_), dim=1)
# the same for masking (if provided)
if tok_mask is not None:
# since mask does not have the latent dim (d), we need to remove it from einops dims
mask_ = rearrange(mask_, f'{einops_from} -> {einops_to}'.replace(' d', ''),
**einops_dims)
cls_mask = repeat(cls_mask, 'b () -> (b r) ()',
r=r) # expand cls_mask across time or space
mask_ = torch.cat((cls_mask, mask_), dim=1)
# attention
out = qkv_attn(q_, k_, v_, tok_mask=mask_)
# merge back time or space
out = rearrange(out, f'{einops_to} -> {einops_from}', **einops_dims)
# concat back the cls token
out = torch.cat((cls_out, out), dim=1)
# merge back the heads
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
## to out
x = self.proj(out)
x = self.proj_drop(x)
return x
class DividedSpaceTimeBlock(nn.Module):
def __init__(self,
dim=768,
num_heads=12,
attn_type='divided',
mlp_ratio=4.,
qkv_bias=False,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.einops_from_space = 'b (f n) d'
self.einops_to_space = '(b f) n d'
self.einops_from_time = 'b (f n) d'
self.einops_to_time = '(b n) f d'
self.norm1 = norm_layer(dim)
self.attn = DividedAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop)
self.timeattn = DividedAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop)
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.norm3 = norm_layer(dim)
def forward(self,
x,
seq_len=196,
num_frames=8,
approx='none',
num_landmarks=128,
tok_mask: torch.Tensor = None):
time_output = self.timeattn(self.norm3(x),
self.einops_from_time,
self.einops_to_time,
n=seq_len,
tok_mask=tok_mask)
time_residual = x + time_output
space_output = self.attn(self.norm1(time_residual),
self.einops_from_space,
self.einops_to_space,
f=num_frames,
tok_mask=tok_mask)
space_residual = time_residual + self.drop_path(space_output)
x = space_residual
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Mlp(nn.Module):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = img_size if type(img_size) is tuple else to_2tuple(img_size)
patch_size = img_size if type(patch_size) is tuple else to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class PatchEmbed3D(nn.Module):
""" Image to Patch Embedding """
def __init__(self,
img_size=224,
temporal_resolution=4,
in_chans=3,
patch_size=16,
z_block_size=2,
embed_dim=768,
flatten=True):
super().__init__()
self.height = (img_size // patch_size)
self.width = (img_size // patch_size)
### v-iashin: these two are incorrect
# self.frames = (temporal_resolution // z_block_size)
# self.num_patches = self.height * self.width * self.frames
self.z_block_size = z_block_size
###
self.proj = nn.Conv3d(in_chans,
embed_dim,
kernel_size=(z_block_size, patch_size, patch_size),
stride=(z_block_size, patch_size, patch_size))
self.flatten = flatten
def forward(self, x):
B, C, T, H, W = x.shape
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2)
return x
class HeadMLP(nn.Module):
def __init__(self, n_input, n_classes, n_hidden=512, p=0.1):
super(HeadMLP, self).__init__()
self.n_input = n_input
self.n_classes = n_classes
self.n_hidden = n_hidden
if n_hidden is None:
# use linear classifier
self.block_forward = nn.Sequential(nn.Dropout(p=p),
nn.Linear(n_input, n_classes, bias=True))
else:
# use simple MLP classifier
self.block_forward = nn.Sequential(nn.Dropout(p=p),
nn.Linear(n_input, n_hidden, bias=True),
nn.BatchNorm1d(n_hidden), nn.ReLU(inplace=True),
nn.Dropout(p=p),
nn.Linear(n_hidden, n_classes, bias=True))
print(f"Dropout-NLP: {p}")
def forward(self, x):
return self.block_forward(x)
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
def adapt_input_conv(in_chans, conv_weight, agg='sum'):
conv_type = conv_weight.dtype
conv_weight = conv_weight.float()
O, I, J, K = conv_weight.shape
if in_chans == 1:
if I > 3:
assert conv_weight.shape[1] % 3 == 0
# For models with space2depth stems
conv_weight = conv_weight.reshape(O, I // 3, 3, J, K)
conv_weight = conv_weight.sum(dim=2, keepdim=False)
else:
if agg == 'sum':
print("Summing conv1 weights")
conv_weight = conv_weight.sum(dim=1, keepdim=True)
else:
print("Averaging conv1 weights")
conv_weight = conv_weight.mean(dim=1, keepdim=True)
elif in_chans != 3:
if I != 3:
raise NotImplementedError('Weight format not supported by conversion.')
else:
if agg == 'sum':
print("Summing conv1 weights")
repeat = int(math.ceil(in_chans / 3))
conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
conv_weight *= (3 / float(in_chans))
else:
print("Averaging conv1 weights")
conv_weight = conv_weight.mean(dim=1, keepdim=True)
conv_weight = conv_weight.repeat(1, in_chans, 1, 1)
conv_weight = conv_weight.to(conv_type)
return conv_weight
def load_pretrained(model,
cfg=None,
num_classes=1000,
in_chans=3,
filter_fn=None,
strict=True,
progress=False):
# Load state dict
assert (f"{cfg.VIT.PRETRAINED_WEIGHTS} not in [vit_1k, vit_1k_large]")
state_dict = torch.hub.load_state_dict_from_url(url=default_cfgs[cfg.VIT.PRETRAINED_WEIGHTS])
if filter_fn is not None:
state_dict = filter_fn(state_dict)
input_convs = 'patch_embed.proj'
if input_convs is not None and in_chans != 3:
if isinstance(input_convs, str):
input_convs = (input_convs, )
for input_conv_name in input_convs:
weight_name = input_conv_name + '.weight'
try:
state_dict[weight_name] = adapt_input_conv(in_chans,
state_dict[weight_name],
agg='avg')
print(
f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)'
)
except NotImplementedError as e:
del state_dict[weight_name]
strict = False
print(
f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.'
)
classifier_name = 'head'
label_offset = cfg.get('label_offset', 0)
pretrain_classes = 1000
if num_classes != pretrain_classes:
# completely discard fully connected if model num_classes doesn't match pretrained weights
del state_dict[classifier_name + '.weight']
del state_dict[classifier_name + '.bias']
strict = False
elif label_offset > 0:
# special case for pretrained weights with an extra background class in pretrained weights
classifier_weight = state_dict[classifier_name + '.weight']
state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:]
classifier_bias = state_dict[classifier_name + '.bias']
state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:]
loaded_state = state_dict
self_state = model.state_dict()
all_names = set(self_state.keys())
saved_names = set([])
for name, param in loaded_state.items():
param = param
if 'module.' in name:
name = name.replace('module.', '')
if name in self_state.keys() and param.shape == self_state[name].shape:
saved_names.add(name)
self_state[name].copy_(param)
else:
print(f"didnt load: {name} of shape: {param.shape}")
print("Missing Keys:")
print(all_names - saved_names)