Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
import numpy as np | |
import torch | |
class DiagonalGaussianDistribution: | |
def __init__(self, parameters, deterministic=False): | |
self.parameters = parameters | |
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
self.std = torch.exp(0.5 * self.logvar) | |
self.var = torch.exp(self.logvar) | |
if self.deterministic: | |
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) | |
def sample(self, rng: Optional[torch.Generator] = None): | |
# x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) | |
r = torch.empty_like(self.mean).normal_(generator=rng) | |
x = self.mean + self.std * r | |
return x | |
def kl(self, other=None): | |
if self.deterministic: | |
return torch.Tensor([0.]) | |
else: | |
if other is None: | |
return 0.5 * torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar | |
else: | |
return 0.5 * (torch.pow(self.mean - other.mean, 2) / other.var + | |
self.var / other.var - 1.0 - self.logvar + other.logvar) | |
def nll(self, sample, dims=[1, 2, 3]): | |
if self.deterministic: | |
return torch.Tensor([0.]) | |
logtwopi = np.log(2.0 * np.pi) | |
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, | |
dim=dims) | |
def mode(self): | |
return self.mean | |