Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,15 @@ import spaces
|
|
2 |
import logging
|
3 |
from datetime import datetime
|
4 |
from pathlib import Path
|
5 |
-
|
6 |
import gradio as gr
|
7 |
import torch
|
8 |
import torchaudio
|
9 |
import os
|
|
|
|
|
|
|
10 |
|
|
|
11 |
try:
|
12 |
import mmaudio
|
13 |
except ImportError:
|
@@ -20,22 +23,80 @@ from mmaudio.model.flow_matching import FlowMatching
|
|
20 |
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
21 |
from mmaudio.model.sequence_config import SequenceConfig
|
22 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
23 |
-
import tempfile
|
24 |
|
|
|
25 |
torch.backends.cuda.matmul.allow_tf32 = True
|
26 |
torch.backends.cudnn.allow_tf32 = True
|
27 |
|
|
|
28 |
log = logging.getLogger()
|
29 |
|
|
|
30 |
device = 'cuda'
|
31 |
dtype = torch.bfloat16
|
32 |
|
|
|
33 |
model: ModelConfig = all_model_cfg['large_44k_v2']
|
34 |
model.download_if_needed()
|
35 |
output_dir = Path('./output/gradio')
|
36 |
|
37 |
setup_eval_logging()
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
41 |
seq_cfg = model.seq_cfg
|
@@ -54,14 +115,25 @@ def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
|
54 |
|
55 |
return net, feature_utils, seq_cfg
|
56 |
|
57 |
-
|
58 |
net, feature_utils, seq_cfg = get_model()
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
@spaces.GPU
|
62 |
@torch.inference_mode()
|
63 |
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
64 |
cfg_strength: float, duration: float):
|
|
|
|
|
65 |
|
66 |
rng = torch.Generator(device=device)
|
67 |
rng.manual_seed(seed)
|
@@ -83,23 +155,20 @@ def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int
|
|
83 |
cfg_strength=cfg_strength)
|
84 |
audio = audios.float().cpu()[0]
|
85 |
|
86 |
-
# current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
87 |
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
88 |
-
# output_dir.mkdir(exist_ok=True, parents=True)
|
89 |
-
# video_save_path = output_dir / f'{current_time_string}.mp4'
|
90 |
make_video(video,
|
91 |
video_save_path,
|
92 |
audio,
|
93 |
sampling_rate=seq_cfg.sampling_rate,
|
94 |
duration_sec=seq_cfg.duration)
|
95 |
-
log.info(f'Saved video to {video_save_path}')
|
96 |
return video_save_path
|
97 |
|
98 |
-
|
99 |
@spaces.GPU
|
100 |
@torch.inference_mode()
|
101 |
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
|
102 |
duration: float):
|
|
|
|
|
103 |
|
104 |
rng = torch.Generator(device=device)
|
105 |
rng.manual_seed(seed)
|
@@ -121,141 +190,49 @@ def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
|
121 |
|
122 |
audio_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.flac').name
|
123 |
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
|
124 |
-
log.info(f'Saved audio to {audio_save_path}')
|
125 |
return audio_save_path
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
video_to_audio_tab = gr.Interface(
|
129 |
fn=video_to_audio,
|
130 |
inputs=[
|
131 |
-
gr.Video(),
|
132 |
-
gr.
|
133 |
-
gr.
|
134 |
-
gr.Number(label=
|
135 |
-
gr.Number(label=
|
136 |
-
gr.Number(label=
|
137 |
-
gr.Number(label=
|
138 |
],
|
139 |
-
outputs=
|
140 |
-
|
141 |
-
|
142 |
-
examples=[
|
143 |
-
[
|
144 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_beach.mp4',
|
145 |
-
'waves, seagulls',
|
146 |
-
'',
|
147 |
-
0,
|
148 |
-
25,
|
149 |
-
4.5,
|
150 |
-
10,
|
151 |
-
],
|
152 |
-
[
|
153 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_serpent.mp4',
|
154 |
-
'',
|
155 |
-
'music',
|
156 |
-
0,
|
157 |
-
25,
|
158 |
-
4.5,
|
159 |
-
10,
|
160 |
-
],
|
161 |
-
[
|
162 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_seahorse.mp4',
|
163 |
-
'bubbles',
|
164 |
-
'',
|
165 |
-
0,
|
166 |
-
25,
|
167 |
-
4.5,
|
168 |
-
10,
|
169 |
-
],
|
170 |
-
[
|
171 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_india.mp4',
|
172 |
-
'Indian holy music',
|
173 |
-
'',
|
174 |
-
0,
|
175 |
-
25,
|
176 |
-
4.5,
|
177 |
-
10,
|
178 |
-
],
|
179 |
-
[
|
180 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_galloping.mp4',
|
181 |
-
'galloping',
|
182 |
-
'',
|
183 |
-
0,
|
184 |
-
25,
|
185 |
-
4.5,
|
186 |
-
10,
|
187 |
-
],
|
188 |
-
[
|
189 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_kraken.mp4',
|
190 |
-
'waves, storm',
|
191 |
-
'',
|
192 |
-
0,
|
193 |
-
25,
|
194 |
-
4.5,
|
195 |
-
10,
|
196 |
-
],
|
197 |
-
[
|
198 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_nyc.mp4',
|
199 |
-
'',
|
200 |
-
'',
|
201 |
-
0,
|
202 |
-
25,
|
203 |
-
4.5,
|
204 |
-
10,
|
205 |
-
],
|
206 |
-
[
|
207 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/mochi_storm.mp4',
|
208 |
-
'storm',
|
209 |
-
'',
|
210 |
-
0,
|
211 |
-
25,
|
212 |
-
4.5,
|
213 |
-
10,
|
214 |
-
],
|
215 |
-
[
|
216 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/hunyuan_spring.mp4',
|
217 |
-
'',
|
218 |
-
'',
|
219 |
-
0,
|
220 |
-
25,
|
221 |
-
4.5,
|
222 |
-
10,
|
223 |
-
],
|
224 |
-
[
|
225 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/hunyuan_typing.mp4',
|
226 |
-
'typing',
|
227 |
-
'',
|
228 |
-
0,
|
229 |
-
25,
|
230 |
-
4.5,
|
231 |
-
10,
|
232 |
-
],
|
233 |
-
[
|
234 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/hunyuan_wake_up.mp4',
|
235 |
-
'',
|
236 |
-
'',
|
237 |
-
0,
|
238 |
-
25,
|
239 |
-
4.5,
|
240 |
-
10,
|
241 |
-
],
|
242 |
-
])
|
243 |
|
244 |
text_to_audio_tab = gr.Interface(
|
245 |
fn=text_to_audio,
|
246 |
inputs=[
|
247 |
-
gr.
|
248 |
-
gr.
|
249 |
-
gr.Number(label=
|
250 |
-
gr.Number(label=
|
251 |
-
gr.Number(label=
|
252 |
-
gr.Number(label=
|
253 |
],
|
254 |
-
outputs=
|
255 |
-
|
256 |
-
title='MMAudio β Text-to-Audio Synthesis',
|
257 |
)
|
258 |
|
|
|
259 |
if __name__ == "__main__":
|
260 |
-
gr.TabbedInterface(
|
261 |
-
|
|
|
|
|
|
|
|
2 |
import logging
|
3 |
from datetime import datetime
|
4 |
from pathlib import Path
|
|
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
import torchaudio
|
8 |
import os
|
9 |
+
from transformers import pipeline
|
10 |
+
from pixabay import Image, Video
|
11 |
+
import tempfile
|
12 |
|
13 |
+
# κΈ°λ³Έ μ€μ
|
14 |
try:
|
15 |
import mmaudio
|
16 |
except ImportError:
|
|
|
23 |
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
24 |
from mmaudio.model.sequence_config import SequenceConfig
|
25 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
|
|
26 |
|
27 |
+
# CUDA μ€μ
|
28 |
torch.backends.cuda.matmul.allow_tf32 = True
|
29 |
torch.backends.cudnn.allow_tf32 = True
|
30 |
|
31 |
+
# λ‘κΉ
μ€μ
|
32 |
log = logging.getLogger()
|
33 |
|
34 |
+
# μ₯μΉ λ° λ°μ΄ν° νμ
μ€μ
|
35 |
device = 'cuda'
|
36 |
dtype = torch.bfloat16
|
37 |
|
38 |
+
# λͺ¨λΈ μ€μ
|
39 |
model: ModelConfig = all_model_cfg['large_44k_v2']
|
40 |
model.download_if_needed()
|
41 |
output_dir = Path('./output/gradio')
|
42 |
|
43 |
setup_eval_logging()
|
44 |
|
45 |
+
# λ²μκΈ° λ° Pixabay API μ€μ
|
46 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
47 |
+
PIXABAY_API_KEY = "33492762-a28a596ec4f286f84cd328b17"
|
48 |
+
pixabay_video = Video(PIXABAY_API_KEY)
|
49 |
+
|
50 |
+
# CSS μ€νμΌ μ μ
|
51 |
+
custom_css = """
|
52 |
+
.gradio-container {
|
53 |
+
background: linear-gradient(45deg, #1a1a1a, #2a2a2a);
|
54 |
+
border-radius: 15px;
|
55 |
+
box-shadow: 0 8px 32px rgba(0,0,0,0.3);
|
56 |
+
}
|
57 |
+
|
58 |
+
.input-container, .output-container {
|
59 |
+
background: rgba(255,255,255,0.1);
|
60 |
+
backdrop-filter: blur(10px);
|
61 |
+
border-radius: 10px;
|
62 |
+
padding: 20px;
|
63 |
+
transform-style: preserve-3d;
|
64 |
+
transition: transform 0.3s ease;
|
65 |
+
}
|
66 |
+
|
67 |
+
.input-container:hover {
|
68 |
+
transform: translateZ(20px);
|
69 |
+
}
|
70 |
+
|
71 |
+
.gallery-item {
|
72 |
+
transition: transform 0.3s ease;
|
73 |
+
border-radius: 8px;
|
74 |
+
overflow: hidden;
|
75 |
+
}
|
76 |
+
|
77 |
+
.gallery-item:hover {
|
78 |
+
transform: scale(1.05);
|
79 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.2);
|
80 |
+
}
|
81 |
+
|
82 |
+
.tabs {
|
83 |
+
background: rgba(255,255,255,0.05);
|
84 |
+
border-radius: 10px;
|
85 |
+
padding: 10px;
|
86 |
+
}
|
87 |
+
|
88 |
+
button {
|
89 |
+
background: linear-gradient(45deg, #4a90e2, #357abd);
|
90 |
+
border: none;
|
91 |
+
border-radius: 5px;
|
92 |
+
transition: all 0.3s ease;
|
93 |
+
}
|
94 |
+
|
95 |
+
button:hover {
|
96 |
+
transform: translateY(-2px);
|
97 |
+
box-shadow: 0 4px 15px rgba(74,144,226,0.3);
|
98 |
+
}
|
99 |
+
"""
|
100 |
|
101 |
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
102 |
seq_cfg = model.seq_cfg
|
|
|
115 |
|
116 |
return net, feature_utils, seq_cfg
|
117 |
|
|
|
118 |
net, feature_utils, seq_cfg = get_model()
|
119 |
|
120 |
+
def translate_prompt(text):
|
121 |
+
if text and any(ord(char) >= 0x3131 and ord(char) <= 0xD7A3 for char in text):
|
122 |
+
translation = translator(text)[0]['translation_text']
|
123 |
+
return translation
|
124 |
+
return text
|
125 |
+
|
126 |
+
def search_videos(query):
|
127 |
+
query = translate_prompt(query)
|
128 |
+
videos = pixabay_video.search(q=query, per_page=80)
|
129 |
+
return [video.video_large for video in videos['hits']]
|
130 |
|
131 |
@spaces.GPU
|
132 |
@torch.inference_mode()
|
133 |
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
134 |
cfg_strength: float, duration: float):
|
135 |
+
prompt = translate_prompt(prompt)
|
136 |
+
negative_prompt = translate_prompt(negative_prompt)
|
137 |
|
138 |
rng = torch.Generator(device=device)
|
139 |
rng.manual_seed(seed)
|
|
|
155 |
cfg_strength=cfg_strength)
|
156 |
audio = audios.float().cpu()[0]
|
157 |
|
|
|
158 |
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
|
|
|
|
159 |
make_video(video,
|
160 |
video_save_path,
|
161 |
audio,
|
162 |
sampling_rate=seq_cfg.sampling_rate,
|
163 |
duration_sec=seq_cfg.duration)
|
|
|
164 |
return video_save_path
|
165 |
|
|
|
166 |
@spaces.GPU
|
167 |
@torch.inference_mode()
|
168 |
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
|
169 |
duration: float):
|
170 |
+
prompt = translate_prompt(prompt)
|
171 |
+
negative_prompt = translate_prompt(negative_prompt)
|
172 |
|
173 |
rng = torch.Generator(device=device)
|
174 |
rng.manual_seed(seed)
|
|
|
190 |
|
191 |
audio_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.flac').name
|
192 |
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
|
|
|
193 |
return audio_save_path
|
194 |
|
195 |
+
# μΈν°νμ΄μ€ μ μ
|
196 |
+
video_search_tab = gr.Interface(
|
197 |
+
fn=search_videos,
|
198 |
+
inputs=gr.Textbox(label="κ²μμ΄ μ
λ ₯"),
|
199 |
+
outputs=gr.Gallery(label="κ²μ κ²°κ³Ό", columns=4, rows=20),
|
200 |
+
css=custom_css
|
201 |
+
)
|
202 |
|
203 |
video_to_audio_tab = gr.Interface(
|
204 |
fn=video_to_audio,
|
205 |
inputs=[
|
206 |
+
gr.Video(label="λΉλμ€"),
|
207 |
+
gr.Textbox(label="ν둬ννΈ"),
|
208 |
+
gr.Textbox(label="λ€κ±°ν°λΈ ν둬ννΈ", value="music"),
|
209 |
+
gr.Number(label="μλ", value=0),
|
210 |
+
gr.Number(label="μ€ν
μ", value=25),
|
211 |
+
gr.Number(label="κ°μ΄λ κ°λ", value=4.5),
|
212 |
+
gr.Number(label="κΈΈμ΄(μ΄)", value=8),
|
213 |
],
|
214 |
+
outputs="playable_video",
|
215 |
+
css=custom_css
|
216 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
text_to_audio_tab = gr.Interface(
|
219 |
fn=text_to_audio,
|
220 |
inputs=[
|
221 |
+
gr.Textbox(label="ν둬ννΈ"),
|
222 |
+
gr.Textbox(label="λ€κ±°ν°λΈ ν둬ννΈ"),
|
223 |
+
gr.Number(label="μλ", value=0),
|
224 |
+
gr.Number(label="μ€ν
μ", value=25),
|
225 |
+
gr.Number(label="κ°μ΄λ κ°λ", value=4.5),
|
226 |
+
gr.Number(label="κΈΈμ΄(μ΄)", value=8),
|
227 |
],
|
228 |
+
outputs="audio",
|
229 |
+
css=custom_css
|
|
|
230 |
)
|
231 |
|
232 |
+
# λ©μΈ μ€ν
|
233 |
if __name__ == "__main__":
|
234 |
+
gr.TabbedInterface(
|
235 |
+
[video_search_tab, video_to_audio_tab, text_to_audio_tab],
|
236 |
+
["λΉλμ€ κ²μ", "λΉλμ€-μ€λμ€ λ³ν", "ν
μ€νΈ-μ€λμ€ λ³ν"],
|
237 |
+
css=custom_css
|
238 |
+
).launch(allowed_paths=[output_dir])
|