from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from einops.layers.torch import Rearrange from torch.nn.attention import SDPBackend, sdpa_kernel from mmaudio.ext.rotary_embeddings import apply_rope from mmaudio.model.low_level import MLP, ChannelLastConv1d, ConvMLP def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor): return x * (1 + scale) + shift def attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor): # training will crash without these contiguous calls and the CUDNN limitation # I believe this is related to https://github.com/pytorch/pytorch/issues/133974 # unresolved at the time of writing q = q.contiguous() k = k.contiguous() v = v.contiguous() out = F.scaled_dot_product_attention(q, k, v) out = rearrange(out, 'b h n d -> b n (h d)').contiguous() return out class SelfAttention(nn.Module): def __init__(self, dim: int, nheads: int): super().__init__() self.dim = dim self.nheads = nheads self.qkv = nn.Linear(dim, dim * 3, bias=True) self.q_norm = nn.RMSNorm(dim // nheads) self.k_norm = nn.RMSNorm(dim // nheads) self.split_into_heads = Rearrange('b n (h d j) -> b h n d j', h=nheads, d=dim // nheads, j=3) def pre_attention( self, x: torch.Tensor, rot: Optional[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # x: batch_size * n_tokens * n_channels qkv = self.qkv(x) q, k, v = self.split_into_heads(qkv).chunk(3, dim=-1) q = q.squeeze(-1) k = k.squeeze(-1) v = v.squeeze(-1) q = self.q_norm(q) k = self.k_norm(k) if rot is not None: q = apply_rope(q, rot) k = apply_rope(k, rot) return q, k, v def forward( self, x: torch.Tensor, # batch_size * n_tokens * n_channels ) -> torch.Tensor: q, v, k = self.pre_attention(x) out = attention(q, k, v) return out class MMDitSingleBlock(nn.Module): def __init__(self, dim: int, nhead: int, mlp_ratio: float = 4.0, pre_only: bool = False, kernel_size: int = 7, padding: int = 3): super().__init__() self.norm1 = nn.LayerNorm(dim, elementwise_affine=False) self.attn = SelfAttention(dim, nhead) self.pre_only = pre_only if pre_only: self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True)) else: if kernel_size == 1: self.linear1 = nn.Linear(dim, dim) else: self.linear1 = ChannelLastConv1d(dim, dim, kernel_size=kernel_size, padding=padding) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False) if kernel_size == 1: self.ffn = MLP(dim, int(dim * mlp_ratio)) else: self.ffn = ConvMLP(dim, int(dim * mlp_ratio), kernel_size=kernel_size, padding=padding) self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 6 * dim, bias=True)) def pre_attention(self, x: torch.Tensor, c: torch.Tensor, rot: Optional[torch.Tensor]): # x: BS * N * D # cond: BS * D modulation = self.adaLN_modulation(c) if self.pre_only: (shift_msa, scale_msa) = modulation.chunk(2, dim=-1) gate_msa = shift_mlp = scale_mlp = gate_mlp = None else: (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp) = modulation.chunk(6, dim=-1) x = modulate(self.norm1(x), shift_msa, scale_msa) q, k, v = self.attn.pre_attention(x, rot) return (q, k, v), (gate_msa, shift_mlp, scale_mlp, gate_mlp) def post_attention(self, x: torch.Tensor, attn_out: torch.Tensor, c: tuple[torch.Tensor]): if self.pre_only: return x (gate_msa, shift_mlp, scale_mlp, gate_mlp) = c x = x + self.linear1(attn_out) * gate_msa r = modulate(self.norm2(x), shift_mlp, scale_mlp) x = x + self.ffn(r) * gate_mlp return x def forward(self, x: torch.Tensor, cond: torch.Tensor, rot: Optional[torch.Tensor]) -> torch.Tensor: # x: BS * N * D # cond: BS * D x_qkv, x_conditions = self.pre_attention(x, cond, rot) attn_out = attention(*x_qkv) x = self.post_attention(x, attn_out, x_conditions) return x class JointBlock(nn.Module): def __init__(self, dim: int, nhead: int, mlp_ratio: float = 4.0, pre_only: bool = False): super().__init__() self.pre_only = pre_only self.latent_block = MMDitSingleBlock(dim, nhead, mlp_ratio, pre_only=False, kernel_size=3, padding=1) self.clip_block = MMDitSingleBlock(dim, nhead, mlp_ratio, pre_only=pre_only, kernel_size=3, padding=1) self.text_block = MMDitSingleBlock(dim, nhead, mlp_ratio, pre_only=pre_only, kernel_size=1) def forward(self, latent: torch.Tensor, clip_f: torch.Tensor, text_f: torch.Tensor, global_c: torch.Tensor, extended_c: torch.Tensor, latent_rot: torch.Tensor, clip_rot: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: # latent: BS * N1 * D # clip_f: BS * N2 * D # c: BS * (1/N) * D x_qkv, x_mod = self.latent_block.pre_attention(latent, extended_c, latent_rot) c_qkv, c_mod = self.clip_block.pre_attention(clip_f, global_c, clip_rot) t_qkv, t_mod = self.text_block.pre_attention(text_f, global_c, rot=None) latent_len = latent.shape[1] clip_len = clip_f.shape[1] text_len = text_f.shape[1] joint_qkv = [torch.cat([x_qkv[i], c_qkv[i], t_qkv[i]], dim=2) for i in range(3)] attn_out = attention(*joint_qkv) x_attn_out = attn_out[:, :latent_len] c_attn_out = attn_out[:, latent_len:latent_len + clip_len] t_attn_out = attn_out[:, latent_len + clip_len:] latent = self.latent_block.post_attention(latent, x_attn_out, x_mod) if not self.pre_only: clip_f = self.clip_block.post_attention(clip_f, c_attn_out, c_mod) text_f = self.text_block.post_attention(text_f, t_attn_out, t_mod) return latent, clip_f, text_f class FinalBlock(nn.Module): def __init__(self, dim, out_dim): super().__init__() self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True)) self.norm = nn.LayerNorm(dim, elementwise_affine=False) self.conv = ChannelLastConv1d(dim, out_dim, kernel_size=7, padding=3) def forward(self, latent, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) latent = modulate(self.norm(latent), shift, scale) latent = self.conv(latent) return latent