from typing import Union import torch from einops import rearrange from torch import Tensor # Ref: https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py # Ref: https://github.com/lucidrains/rotary-embedding-torch def compute_rope_rotations(length: int, dim: int, theta: int, *, freq_scaling: float = 1.0, device: Union[torch.device, str] = 'cpu') -> Tensor: assert dim % 2 == 0 with torch.amp.autocast(device_type='cuda', enabled=False): pos = torch.arange(length, dtype=torch.float32, device=device) freqs = 1.0 / (theta**(torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) freqs *= freq_scaling rot = torch.einsum('..., f -> ... f', pos, freqs) rot = torch.stack([torch.cos(rot), -torch.sin(rot), torch.sin(rot), torch.cos(rot)], dim=-1) rot = rearrange(rot, 'n d (i j) -> 1 n d i j', i=2, j=2) return rot def apply_rope(x: Tensor, rot: Tensor) -> tuple[Tensor, Tensor]: with torch.amp.autocast(device_type='cuda', enabled=False): _x = x.float() _x = _x.view(*_x.shape[:-1], -1, 1, 2) x_out = rot[..., 0] * _x[..., 0] + rot[..., 1] * _x[..., 1] return x_out.reshape(*x.shape).to(dtype=x.dtype)