import torch from torch import nn from torch.nn import functional as F class ChannelLastConv1d(nn.Conv1d): def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.permute(0, 2, 1) x = super().forward(x) x = x.permute(0, 2, 1) return x # https://github.com/Stability-AI/sd3-ref class MLP(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int = 256, ): """ Initialize the FeedForward module. Args: dim (int): Input dimension. hidden_dim (int): Hidden dimension of the feedforward layer. multiple_of (int): Value to ensure hidden dimension is a multiple of this value. Attributes: w1 (ColumnParallelLinear): Linear transformation for the first layer. w2 (RowParallelLinear): Linear transformation for the second layer. w3 (ColumnParallelLinear): Linear transformation for the third layer. """ super().__init__() hidden_dim = int(2 * hidden_dim / 3) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = nn.Linear(dim, hidden_dim, bias=False) self.w2 = nn.Linear(hidden_dim, dim, bias=False) self.w3 = nn.Linear(dim, hidden_dim, bias=False) def forward(self, x): return self.w2(F.silu(self.w1(x)) * self.w3(x)) class ConvMLP(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int = 256, kernel_size: int = 3, padding: int = 1, ): """ Initialize the FeedForward module. Args: dim (int): Input dimension. hidden_dim (int): Hidden dimension of the feedforward layer. multiple_of (int): Value to ensure hidden dimension is a multiple of this value. Attributes: w1 (ColumnParallelLinear): Linear transformation for the first layer. w2 (RowParallelLinear): Linear transformation for the second layer. w3 (ColumnParallelLinear): Linear transformation for the third layer. """ super().__init__() hidden_dim = int(2 * hidden_dim / 3) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = ChannelLastConv1d(dim, hidden_dim, bias=False, kernel_size=kernel_size, padding=padding) self.w2 = ChannelLastConv1d(hidden_dim, dim, bias=False, kernel_size=kernel_size, padding=padding) self.w3 = ChannelLastConv1d(dim, hidden_dim, bias=False, kernel_size=kernel_size, padding=padding) def forward(self, x): return self.w2(F.silu(self.w1(x)) * self.w3(x))