import dataclasses import logging from pathlib import Path from typing import Optional import av import torch from colorlog import ColoredFormatter from torchvision.transforms import v2 from torio.io import StreamingMediaDecoder, StreamingMediaEncoder from mmaudio.model.flow_matching import FlowMatching from mmaudio.model.networks import MMAudio from mmaudio.model.sequence_config import (CONFIG_16K, CONFIG_44K, SequenceConfig) from mmaudio.model.utils.features_utils import FeaturesUtils from mmaudio.utils.download_utils import download_model_if_needed log = logging.getLogger() @dataclasses.dataclass class ModelConfig: model_name: str model_path: Path vae_path: Path bigvgan_16k_path: Optional[Path] mode: str synchformer_ckpt: Path = Path('./ext_weights/synchformer_state_dict.pth') @property def seq_cfg(self) -> SequenceConfig: if self.mode == '16k': return CONFIG_16K elif self.mode == '44k': return CONFIG_44K def download_if_needed(self): download_model_if_needed(self.model_path) download_model_if_needed(self.vae_path) if self.bigvgan_16k_path is not None: download_model_if_needed(self.bigvgan_16k_path) download_model_if_needed(self.synchformer_ckpt) small_16k = ModelConfig(model_name='small_16k', model_path=Path('./weights/mmaudio_small_16k.pth'), vae_path=Path('./ext_weights/v1-16.pth'), bigvgan_16k_path=Path('./ext_weights/best_netG.pt'), mode='16k') small_44k = ModelConfig(model_name='small_44k', model_path=Path('./weights/mmaudio_small_44k.pth'), vae_path=Path('./ext_weights/v1-44.pth'), bigvgan_16k_path=None, mode='44k') medium_44k = ModelConfig(model_name='medium_44k', model_path=Path('./weights/mmaudio_medium_44k.pth'), vae_path=Path('./ext_weights/v1-44.pth'), bigvgan_16k_path=None, mode='44k') large_44k = ModelConfig(model_name='large_44k', model_path=Path('./weights/mmaudio_large_44k.pth'), vae_path=Path('./ext_weights/v1-44.pth'), bigvgan_16k_path=None, mode='44k') large_44k_v2 = ModelConfig(model_name='large_44k_v2', model_path=Path('./weights/mmaudio_large_44k_v2.pth'), vae_path=Path('./ext_weights/v1-44.pth'), bigvgan_16k_path=None, mode='44k') all_model_cfg: dict[str, ModelConfig] = { 'small_16k': small_16k, 'small_44k': small_44k, 'medium_44k': medium_44k, 'large_44k': large_44k, 'large_44k_v2': large_44k_v2, } def generate(clip_video: Optional[torch.Tensor], sync_video: Optional[torch.Tensor], text: Optional[list[str]], *, negative_text: Optional[list[str]] = None, feature_utils: FeaturesUtils, net: MMAudio, fm: FlowMatching, rng: torch.Generator, cfg_strength: float): device = feature_utils.device dtype = feature_utils.dtype bs = len(text) if clip_video is not None: clip_video = clip_video.to(device, dtype, non_blocking=True) clip_features = feature_utils.encode_video_with_clip(clip_video, batch_size=bs) else: clip_features = net.get_empty_clip_sequence(bs) if sync_video is not None: sync_video = sync_video.to(device, dtype, non_blocking=True) sync_features = feature_utils.encode_video_with_sync(sync_video, batch_size=bs) else: sync_features = net.get_empty_sync_sequence(bs) if text is not None: text_features = feature_utils.encode_text(text) else: text_features = net.get_empty_string_sequence(bs) if negative_text is not None: assert len(negative_text) == bs negative_text_features = feature_utils.encode_text(negative_text) else: negative_text_features = net.get_empty_string_sequence(bs) x0 = torch.randn(bs, net.latent_seq_len, net.latent_dim, device=device, dtype=dtype, generator=rng) preprocessed_conditions = net.preprocess_conditions(clip_features, sync_features, text_features) empty_conditions = net.get_empty_conditions( bs, negative_text_features=negative_text_features if negative_text is not None else None) cfg_ode_wrapper = lambda t, x: net.ode_wrapper(t, x, preprocessed_conditions, empty_conditions, cfg_strength) x1 = fm.to_data(cfg_ode_wrapper, x0) x1 = net.unnormalize(x1) spec = feature_utils.decode(x1) audio = feature_utils.vocode(spec) return audio LOGFORMAT = " %(log_color)s%(levelname)-8s%(reset)s | %(log_color)s%(message)s%(reset)s" def setup_eval_logging(log_level: int = logging.INFO): logging.root.setLevel(log_level) formatter = ColoredFormatter(LOGFORMAT) stream = logging.StreamHandler() stream.setLevel(log_level) stream.setFormatter(formatter) log = logging.getLogger() log.setLevel(log_level) log.addHandler(stream) def load_video(video_path: Path, duration_sec: float) -> tuple[torch.Tensor, torch.Tensor, float]: _CLIP_SIZE = 384 _CLIP_FPS = 8.0 _SYNC_SIZE = 224 _SYNC_FPS = 25.0 clip_transform = v2.Compose([ v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC), v2.ToImage(), v2.ToDtype(torch.float32, scale=True), ]) sync_transform = v2.Compose([ v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC), v2.CenterCrop(_SYNC_SIZE), v2.ToImage(), v2.ToDtype(torch.float32, scale=True), v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) reader = StreamingMediaDecoder(video_path) reader.add_basic_video_stream( frames_per_chunk=int(_CLIP_FPS * duration_sec), buffer_chunk_size=-1, frame_rate=_CLIP_FPS, format='rgb24', ) reader.add_basic_video_stream( frames_per_chunk=int(_SYNC_FPS * duration_sec), buffer_chunk_size=-1, frame_rate=_SYNC_FPS, format='rgb24', ) reader.fill_buffer() data_chunk = reader.pop_chunks() clip_chunk = data_chunk[0] sync_chunk = data_chunk[1] print('clip', clip_chunk.shape, clip_chunk.dtype, clip_chunk.max()) print('sync', sync_chunk.shape, sync_chunk.dtype, sync_chunk.max()) assert clip_chunk is not None assert sync_chunk is not None for i in range(reader.num_out_streams): print(reader.get_out_stream_info(i)) clip_frames = clip_transform(clip_chunk) sync_frames = sync_transform(sync_chunk) clip_length_sec = clip_frames.shape[0] / _CLIP_FPS sync_length_sec = sync_frames.shape[0] / _SYNC_FPS if clip_length_sec < duration_sec: log.warning(f'Clip video is too short: {clip_length_sec:.2f} < {duration_sec:.2f}') log.warning(f'Truncating to {clip_length_sec:.2f} sec') duration_sec = clip_length_sec if sync_length_sec < duration_sec: log.warning(f'Sync video is too short: {sync_length_sec:.2f} < {duration_sec:.2f}') log.warning(f'Truncating to {sync_length_sec:.2f} sec') duration_sec = sync_length_sec clip_frames = clip_frames[:int(_CLIP_FPS * duration_sec)] sync_frames = sync_frames[:int(_SYNC_FPS * duration_sec)] return clip_frames, sync_frames, duration_sec def make_video(video_path: Path, output_path: Path, audio: torch.Tensor, sampling_rate: int, duration_sec: float): av_video = av.open(video_path) frame_rate = av_video.streams.video[0].guessed_rate approx_max_length = int(duration_sec * frame_rate) + 1 reader = StreamingMediaDecoder(video_path) reader.add_basic_video_stream( frames_per_chunk=approx_max_length, buffer_chunk_size=-1, format='rgb24', ) reader.fill_buffer() video_chunk = reader.pop_chunks()[0] assert video_chunk is not None h, w = video_chunk.shape[-2:] video_chunk = video_chunk[:int(frame_rate * duration_sec)] writer = StreamingMediaEncoder(output_path) writer.add_audio_stream( sample_rate=sampling_rate, num_channels=audio.shape[0], encoder='aac', # 'flac' does not work for some reason? ) writer.add_video_stream(frame_rate=frame_rate, width=w, height=h, format='rgb24', encoder='libx264', encoder_format='yuv420p') with writer.open(): writer.write_audio_chunk(0, audio.float().transpose(0, 1)) writer.write_video_chunk(1, video_chunk)