fash0 / densepose /data /samplers /densepose_cse_confidence_based.py
IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
5.15 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import random
from typing import Optional, Tuple
import torch
from torch.nn import functional as F
from detectron2.config import CfgNode
from detectron2.structures import Instances
from densepose.converters.base import IntTupleBox
from .densepose_cse_base import DensePoseCSEBaseSampler
class DensePoseCSEConfidenceBasedSampler(DensePoseCSEBaseSampler):
"""
Samples DensePose data from DensePose predictions.
Samples for each class are drawn using confidence value estimates.
"""
def __init__(
self,
cfg: CfgNode,
use_gt_categories: bool,
embedder: torch.nn.Module,
confidence_channel: str,
count_per_class: int = 8,
search_count_multiplier: Optional[float] = None,
search_proportion: Optional[float] = None,
):
"""
Constructor
Args:
cfg (CfgNode): the config of the model
embedder (torch.nn.Module): necessary to compute mesh vertex embeddings
confidence_channel (str): confidence channel to use for sampling;
possible values:
"coarse_segm_confidence": confidences for coarse segmentation
(default: "coarse_segm_confidence")
count_per_class (int): the sampler produces at most `count_per_class`
samples for each category (default: 8)
search_count_multiplier (float or None): if not None, the total number
of the most confident estimates of a given class to consider is
defined as `min(search_count_multiplier * count_per_class, N)`,
where `N` is the total number of estimates of the class; cannot be
specified together with `search_proportion` (default: None)
search_proportion (float or None): if not None, the total number of the
of the most confident estimates of a given class to consider is
defined as `min(max(search_proportion * N, count_per_class), N)`,
where `N` is the total number of estimates of the class; cannot be
specified together with `search_count_multiplier` (default: None)
"""
super().__init__(cfg, use_gt_categories, embedder, count_per_class)
self.confidence_channel = confidence_channel
self.search_count_multiplier = search_count_multiplier
self.search_proportion = search_proportion
assert (search_count_multiplier is None) or (search_proportion is None), (
f"Cannot specify both search_count_multiplier (={search_count_multiplier})"
f"and search_proportion (={search_proportion})"
)
def _produce_index_sample(self, values: torch.Tensor, count: int):
"""
Produce a sample of indices to select data based on confidences
Args:
values (torch.Tensor): a tensor of length k that contains confidences
k: number of points labeled with part_id
count (int): number of samples to produce, should be positive and <= k
Return:
list(int): indices of values (along axis 1) selected as a sample
"""
k = values.shape[1]
if k == count:
index_sample = list(range(k))
else:
# take the best count * search_count_multiplier pixels,
# sample from them uniformly
# (here best = smallest variance)
_, sorted_confidence_indices = torch.sort(values[0])
if self.search_count_multiplier is not None:
search_count = min(int(count * self.search_count_multiplier), k)
elif self.search_proportion is not None:
search_count = min(max(int(k * self.search_proportion), count), k)
else:
search_count = min(count, k)
sample_from_top = random.sample(range(search_count), count)
index_sample = sorted_confidence_indices[-search_count:][sample_from_top]
return index_sample
def _produce_mask_and_results(
self, instance: Instances, bbox_xywh: IntTupleBox
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Method to get labels and DensePose results from an instance
Args:
instance (Instances): an instance of
`DensePoseEmbeddingPredictorOutputWithConfidences`
bbox_xywh (IntTupleBox): the corresponding bounding box
Return:
mask (torch.Tensor): shape [H, W], DensePose segmentation mask
embeddings (Tuple[torch.Tensor]): a tensor of shape [D, H, W]
DensePose CSE Embeddings
other_values: a tensor of shape [1, H, W], DensePose CSE confidence
"""
_, _, w, h = bbox_xywh
densepose_output = instance.pred_densepose
mask, embeddings, _ = super()._produce_mask_and_results(instance, bbox_xywh)
other_values = F.interpolate(
getattr(densepose_output, self.confidence_channel),
size=(h, w),
mode="bilinear",
)[0].cpu()
return mask, embeddings, other_values