fash0 / densepose /vis /densepose_results_textures.py
IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
3.79 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
from typing import List, Optional, Tuple
import torch
from detectron2.data.detection_utils import read_image
from ..structures import DensePoseChartResult
from .base import Boxes, Image
from .densepose_results import DensePoseResultsVisualizer
def get_texture_atlas(path: Optional[str]) -> Optional[np.ndarray]:
if path is None:
return None
# Reading images like that downsamples 16-bit images to 8-bit
# If 16-bit images are needed, we can replace that by cv2.imread with the
# cv2.IMREAD_UNCHANGED flag (with cv2 we also need it to keep alpha channels)
# The rest of the pipeline would need to be adapted to 16-bit images too
bgr_image = read_image(path)
rgb_image = np.copy(bgr_image) # Convert BGR -> RGB
rgb_image[:, :, :3] = rgb_image[:, :, 2::-1] # Works with alpha channel
return rgb_image
class DensePoseResultsVisualizerWithTexture(DensePoseResultsVisualizer):
"""
texture_atlas: An image, size 6N * 4N, with N * N squares for each of the 24 body parts.
It must follow the grid found at https://github.com/facebookresearch/DensePose/blob/master/DensePoseData/demo_data/texture_atlas_200.png # noqa
For each body part, U is proportional to the x coordinate, and (1 - V) to y
"""
def __init__(self, texture_atlas, **kwargs):
self.texture_atlas = texture_atlas
self.body_part_size = texture_atlas.shape[0] // 6
assert self.body_part_size == texture_atlas.shape[1] // 4
def visualize(
self,
image_bgr: Image,
results_and_boxes_xywh: Tuple[Optional[List[DensePoseChartResult]], Optional[Boxes]],
) -> Image:
densepose_result, boxes_xywh = results_and_boxes_xywh
if densepose_result is None or boxes_xywh is None:
return image_bgr
boxes_xywh = boxes_xywh.int().cpu().numpy()
texture_image, alpha = self.get_texture()
for i, result in enumerate(densepose_result):
iuv_array = torch.cat((result.labels[None], result.uv.clamp(0, 1)))
x, y, w, h = boxes_xywh[i]
bbox_image = image_bgr[y : y + h, x : x + w]
image_bgr[y : y + h, x : x + w] = self.generate_image_with_texture(
texture_image, alpha, bbox_image, iuv_array.cpu().numpy()
)
return image_bgr
def get_texture(self):
N = self.body_part_size
texture_image = np.zeros([24, N, N, self.texture_atlas.shape[-1]])
for i in range(4):
for j in range(6):
texture_image[(6 * i + j), :, :, :] = self.texture_atlas[
N * j : N * (j + 1), N * i : N * (i + 1), :
]
if texture_image.shape[-1] == 4: # Image with alpha channel
alpha = texture_image[:, :, :, -1] / 255.0
texture_image = texture_image[:, :, :, :3]
else:
alpha = texture_image.sum(axis=-1) > 0
return texture_image, alpha
def generate_image_with_texture(self, texture_image, alpha, bbox_image_bgr, iuv_array):
I, U, V = iuv_array
generated_image_bgr = bbox_image_bgr.copy()
for PartInd in range(1, 25):
x, y = np.where(I == PartInd)
x_index = (U[x, y] * (self.body_part_size - 1)).astype(int)
y_index = ((1 - V[x, y]) * (self.body_part_size - 1)).astype(int)
part_alpha = np.expand_dims(alpha[PartInd - 1, y_index, x_index], -1)
generated_image_bgr[I == PartInd] = (
generated_image_bgr[I == PartInd] * (1 - part_alpha)
+ texture_image[PartInd - 1, y_index, x_index] * part_alpha
)
return generated_image_bgr.astype(np.uint8)