Update app.py
Browse files
app.py
CHANGED
@@ -211,7 +211,7 @@ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denois
|
|
211 |
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
|
212 |
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
|
213 |
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
214 |
-
|
215 |
prompt_embeds=prompt_embeds.to(device,torch.float16),
|
216 |
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
|
217 |
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
|
@@ -228,8 +228,18 @@ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denois
|
|
228 |
width=768,
|
229 |
ip_adapter_image = garm_img.resize((768,1024)),
|
230 |
guidance_scale=2.0,
|
231 |
-
)
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
print(f"Mask shape: {mask.size}")
|
234 |
print(f"Human image shape: {human_img.size}")
|
235 |
print(f"Garment image shape: {garm_img.size}")
|
@@ -242,20 +252,6 @@ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denois
|
|
242 |
else:
|
243 |
return images[0], mask_gray, status_message
|
244 |
|
245 |
-
garm_list = os.listdir(os.path.join(example_path,"cloth"))
|
246 |
-
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
|
247 |
-
|
248 |
-
human_list = os.listdir(os.path.join(example_path,"human"))
|
249 |
-
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
|
250 |
-
|
251 |
-
human_ex_list = []
|
252 |
-
for ex_human in human_list_path:
|
253 |
-
ex_dict= {}
|
254 |
-
ex_dict['background'] = ex_human
|
255 |
-
ex_dict['layers'] = None
|
256 |
-
ex_dict['composite'] = None
|
257 |
-
human_ex_list.append(ex_dict)
|
258 |
-
|
259 |
image_blocks = gr.Blocks(theme="Nymbo/Nymbo_Theme").queue(max_size=12)
|
260 |
with image_blocks as demo:
|
261 |
with gr.Column():
|
|
|
211 |
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
|
212 |
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
|
213 |
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
214 |
+
result = pipe(
|
215 |
prompt_embeds=prompt_embeds.to(device,torch.float16),
|
216 |
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
|
217 |
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
|
|
|
228 |
width=768,
|
229 |
ip_adapter_image = garm_img.resize((768,1024)),
|
230 |
guidance_scale=2.0,
|
231 |
+
)
|
232 |
+
|
233 |
+
# 결과 형태 확인 및 처리
|
234 |
+
if isinstance(result, tuple):
|
235 |
+
images = result[0]
|
236 |
+
elif hasattr(result, 'images'):
|
237 |
+
images = result.images
|
238 |
+
else:
|
239 |
+
raise ValueError(f"Unexpected result type: {type(result)}")
|
240 |
+
|
241 |
+
print(f"Result type: {type(result)}")
|
242 |
+
print(f"Result content: {result}")
|
243 |
print(f"Mask shape: {mask.size}")
|
244 |
print(f"Human image shape: {human_img.size}")
|
245 |
print(f"Garment image shape: {garm_img.size}")
|
|
|
252 |
else:
|
253 |
return images[0], mask_gray, status_message
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
image_blocks = gr.Blocks(theme="Nymbo/Nymbo_Theme").queue(max_size=12)
|
256 |
with image_blocks as demo:
|
257 |
with gr.Column():
|