Update app.py
Browse files
app.py
CHANGED
@@ -48,6 +48,7 @@ def get_mask_location(mode, category, parsing, keypoints):
|
|
48 |
mask = np.zeros_like(parsing)
|
49 |
|
50 |
print(f"Selected category: {category}")
|
|
|
51 |
print(f"Unique values in parsing: {np.unique(parsing)}")
|
52 |
|
53 |
if category == "μμ":
|
@@ -71,7 +72,15 @@ def get_mask_location(mode, category, parsing, keypoints):
|
|
71 |
print(f"Mask shape: {mask.shape}, Unique values in mask: {np.unique(mask)}")
|
72 |
print(f"Number of masked pixels: {np.sum(mask == 255)}")
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
return mask_gray, mask_gray
|
76 |
|
77 |
|
@@ -194,14 +203,33 @@ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denois
|
|
194 |
print(f"Unique values in parsing model output: {np.unique(model_parse)}")
|
195 |
|
196 |
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
mask = mask.resize((768,1024))
|
198 |
print(f"Mask created for category {category}")
|
199 |
|
200 |
-
# λ§μ€ν¬ νμΈ
|
201 |
-
|
202 |
-
|
203 |
-
print(f"Unique values in final mask: {np.unique(
|
204 |
-
print(f"Number of masked pixels in final mask: {np.sum(
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
except Exception as e:
|
207 |
status_message = f"μλ λ§μ€ν¬ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}. κΈ°λ³Έ λ§μ€ν¬λ₯Ό μ¬μ©ν©λλ€."
|
|
|
48 |
mask = np.zeros_like(parsing)
|
49 |
|
50 |
print(f"Selected category: {category}")
|
51 |
+
print(f"Parsing shape: {parsing.shape}")
|
52 |
print(f"Unique values in parsing: {np.unique(parsing)}")
|
53 |
|
54 |
if category == "μμ":
|
|
|
72 |
print(f"Mask shape: {mask.shape}, Unique values in mask: {np.unique(mask)}")
|
73 |
print(f"Number of masked pixels: {np.sum(mask == 255)}")
|
74 |
|
75 |
+
# λ§μ€ν¬ μκ°νλ₯Ό μν μ½λ μΆκ°
|
76 |
+
import matplotlib.pyplot as plt
|
77 |
+
plt.figure(figsize=(10, 10))
|
78 |
+
plt.imshow(mask, cmap='gray')
|
79 |
+
plt.title(f"Mask for {category}")
|
80 |
+
plt.savefig(f"mask_{category}.png")
|
81 |
+
plt.close()
|
82 |
+
|
83 |
+
mask_gray = Image.fromarray(mask.astype(np.uint8))
|
84 |
return mask_gray, mask_gray
|
85 |
|
86 |
|
|
|
203 |
print(f"Unique values in parsing model output: {np.unique(model_parse)}")
|
204 |
|
205 |
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
|
206 |
+
|
207 |
+
# λ§μ€ν¬ νμΈ λ° μκ°ν
|
208 |
+
mask_array = np.array(mask)
|
209 |
+
print(f"Mask shape after get_mask_location: {mask_array.shape}")
|
210 |
+
print(f"Unique values in mask after get_mask_location: {np.unique(mask_array)}")
|
211 |
+
print(f"Number of masked pixels after get_mask_location: {np.sum(mask_array == 255)}")
|
212 |
+
|
213 |
+
plt.figure(figsize=(10, 10))
|
214 |
+
plt.imshow(mask_array, cmap='gray')
|
215 |
+
plt.title(f"Mask after get_mask_location for {category}")
|
216 |
+
plt.savefig(f"mask_after_get_mask_location_{category}.png")
|
217 |
+
plt.close()
|
218 |
+
|
219 |
mask = mask.resize((768,1024))
|
220 |
print(f"Mask created for category {category}")
|
221 |
|
222 |
+
# μ΅μ’
λ§μ€ν¬ νμΈ
|
223 |
+
mask_array_final = np.array(mask)
|
224 |
+
print(f"Final mask shape: {mask_array_final.shape}")
|
225 |
+
print(f"Unique values in final mask: {np.unique(mask_array_final)}")
|
226 |
+
print(f"Number of masked pixels in final mask: {np.sum(mask_array_final == 255)}")
|
227 |
+
|
228 |
+
plt.figure(figsize=(10, 10))
|
229 |
+
plt.imshow(mask_array_final, cmap='gray')
|
230 |
+
plt.title(f"Final Mask for {category}")
|
231 |
+
plt.savefig(f"final_mask_{category}.png")
|
232 |
+
plt.close()
|
233 |
|
234 |
except Exception as e:
|
235 |
status_message = f"μλ λ§μ€ν¬ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}. κΈ°λ³Έ λ§μ€ν¬λ₯Ό μ¬μ©ν©λλ€."
|