flxcaptin / app.py
aiqcamp's picture
Update app.py
9a8bbc6 verified
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import spaces
from PIL import Image
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
models = {
'gokaygokay/Florence-2-Flux-Large': AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-Flux-Large', trust_remote_code=True).eval(),
'gokaygokay/Florence-2-Flux': AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-Flux', trust_remote_code=True).eval(),
}
processors = {
'gokaygokay/Florence-2-Flux-Large': AutoProcessor.from_pretrained('gokaygokay/Florence-2-Flux-Large', trust_remote_code=True),
'gokaygokay/Florence-2-Flux': AutoProcessor.from_pretrained('gokaygokay/Florence-2-Flux', trust_remote_code=True),
}
@spaces.GPU
def run_example(image, model_name='gokaygokay/Florence-2-Flux-Large'):
image = Image.fromarray(image)
task_prompt = "<DESCRIPTION>"
prompt = task_prompt + "Describe this image in great detail."
if image.mode != "RGB":
image = image.convert("RGB")
model = models[model_name]
processor = processors[model_name]
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
repetition_penalty=1.10,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
return parsed_answer["<DESCRIPTION>"]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='gokaygokay/Florence-2-Flux-Large')
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
gr.Examples(
[["image1.jpg"],
["image2.jpg"],
["image3.png"],
["image5.jpg"]],
inputs=[input_img, model_selector],
outputs=[output_text],
fn=run_example,
label='Try captioning on below examples',
cache_examples=True
)
submit_btn.click(run_example, [input_img, model_selector], [output_text])
demo.launch(debug=True)