aiqtech commited on
Commit
87fd52a
โ€ข
1 Parent(s): c3901ef

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +85 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import yfinance as yf
3
+ from prophet import Prophet
4
+ from sklearn.linear_model import LinearRegression
5
+ import pandas as pd
6
+ from datetime import datetime
7
+ import plotly.graph_objects as go
8
+
9
+ def download_data(ticker, start_date='2010-01-01'):
10
+ """
11
+ ์ฃผ์‹ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค์šด๋กœ๋“œํ•˜๊ณ  ํฌ๋งท์„ ์กฐ์ •ํ•˜๋Š” ํ•จ์ˆ˜
12
+ """
13
+ data = yf.download(ticker, start=start_date)
14
+ if data.empty:
15
+ raise ValueError(f"No data returned for {ticker}")
16
+ data.reset_index(inplace=True)
17
+ if 'Adj Close' in data.columns:
18
+ data = data[['Date', 'Adj Close']]
19
+ data.rename(columns={'Date': 'ds', 'Adj Close': 'y'}, inplace=True)
20
+ else:
21
+ raise ValueError("Expected 'Adj Close' in columns")
22
+ return data
23
+
24
+ def predict_future_prices(ticker, periods=1825):
25
+ data = download_data(ticker)
26
+
27
+ # Prophet ๋ชจ๋ธ ์ƒ์„ฑ ๋ฐ ํ•™์Šต
28
+ model_prophet = Prophet(daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=True)
29
+ model_prophet.fit(data)
30
+
31
+ # ๋ฏธ๋ž˜ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ์ƒ์„ฑ ๋ฐ ์˜ˆ์ธก
32
+ future = model_prophet.make_future_dataframe(periods=periods, freq='D')
33
+ forecast_prophet = model_prophet.predict(future)
34
+
35
+ # Linear Regression ๋ชจ๋ธ ์ƒ์„ฑ ๋ฐ ํ•™์Šต
36
+ model_lr = LinearRegression()
37
+ X = pd.to_numeric(pd.Series(range(len(data))))
38
+ y = data['y'].values
39
+ model_lr.fit(X.values.reshape(-1, 1), y)
40
+
41
+ # ๋ฏธ๋ž˜ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ์ƒ์„ฑ ๋ฐ ์˜ˆ์ธก
42
+ future_dates = pd.date_range(start=data['ds'].iloc[-1], periods=periods+1, freq='D')[1:]
43
+ future_lr = pd.DataFrame({'ds': future_dates})
44
+ future_lr['ds'] = future_lr['ds'].dt.strftime('%Y-%m-%d')
45
+ X_future = pd.to_numeric(pd.Series(range(len(data), len(data) + len(future_lr))))
46
+ future_lr['yhat'] = model_lr.predict(X_future.values.reshape(-1, 1))
47
+
48
+ # ์˜ˆ์ธก ๊ฒฐ๊ณผ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
49
+ forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
50
+ fig = go.Figure()
51
+ fig.add_trace(go.Scatter(x=forecast_prophet['ds'], y=forecast_prophet['yhat'], mode='lines', name='Prophet Forecast (Blue)'))
52
+ fig.add_trace(go.Scatter(x=future_lr['ds'], y=future_lr['yhat'], mode='lines', name='Linear Regression Forecast (Red)', line=dict(color='red')))
53
+ fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
54
+
55
+ return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']]
56
+
57
+ css = """footer { visibility: hidden; }"""
58
+
59
+ with gr.Blocks(css=css) as app:
60
+ gr.Markdown("""
61
+ <style>
62
+ .markdown-text h2 {
63
+ font-size: 12px; # ํฐํŠธ ํฌ๊ธฐ๋ฅผ 12px๋กœ ์„ค์ •
64
+ }
65
+ </style>
66
+ <h2>AIQ StockAI: ๊ธ€๋กœ๋ฒŒ ์ž์‚ฐ(์ฃผ์‹, ์ง€์ˆ˜, BTC, ์ƒํ’ˆ ๋“ฑ) ๋ฏธ๋ž˜ ์ฃผ๊ฐ€ ์˜ˆ์ธก AI ์„œ๋น„์Šค</h2>
67
+ <h2>์ „์„ธ๊ณ„ ๋ชจ๋“  ํ‹ฐ์ปค ๋ณด๊ธฐ(์•ผํ›„ ํŒŒ์ด๋‚ธ์Šค): <a href="https://finance.yahoo.com/most-active" target="_blank">์—ฌ๊ธฐ๋ฅผ ํด๋ฆญ</a></h2>
68
+ """)
69
+
70
+ with gr.Row():
71
+ ticker_input = gr.Textbox(value="NVDA", label="Enter Stock Ticker for Forecast")
72
+ periods_input = gr.Number(value=1825, label="Forecast Period (days)")
73
+ forecast_button = gr.Button("Generate Forecast")
74
+
75
+ forecast_chart = gr.Plot(label="Forecast Chart")
76
+ forecast_data_prophet = gr.Dataframe(label="Prophet Forecast Data")
77
+ forecast_data_lr = gr.Dataframe(label="Linear Regression Forecast Data")
78
+
79
+ forecast_button.click(
80
+ fn=predict_future_prices,
81
+ inputs=[ticker_input, periods_input],
82
+ outputs=[forecast_chart, forecast_data_prophet, forecast_data_lr]
83
+ )
84
+
85
+ app.launch()
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ PyPortfolioOpt
2
+ gradio
3
+ yfinance
4
+ prophet
5
+ plotly
6
+ pandas
7
+ numpy
8
+ scikit-learn