|
|
|
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint as cp
|
|
from torch import nn
|
|
|
|
|
|
def get_nonlinear(config_str, channels):
|
|
nonlinear = nn.Sequential()
|
|
for name in config_str.split('-'):
|
|
if name == 'relu':
|
|
nonlinear.add_module('relu', nn.ReLU(inplace=True))
|
|
elif name == 'prelu':
|
|
nonlinear.add_module('prelu', nn.PReLU(channels))
|
|
elif name == 'batchnorm':
|
|
nonlinear.add_module('batchnorm', nn.BatchNorm1d(channels))
|
|
elif name == 'batchnorm_':
|
|
nonlinear.add_module('batchnorm',
|
|
nn.BatchNorm1d(channels, affine=False))
|
|
else:
|
|
raise ValueError('Unexpected module ({}).'.format(name))
|
|
return nonlinear
|
|
|
|
def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2):
|
|
mean = x.mean(dim=dim)
|
|
std = x.std(dim=dim, unbiased=unbiased)
|
|
stats = torch.cat([mean, std], dim=-1)
|
|
if keepdim:
|
|
stats = stats.unsqueeze(dim=dim)
|
|
return stats
|
|
|
|
|
|
class StatsPool(nn.Module):
|
|
def forward(self, x):
|
|
return statistics_pooling(x)
|
|
|
|
|
|
class TDNNLayer(nn.Module):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=1,
|
|
bias=False,
|
|
config_str='batchnorm-relu'):
|
|
super(TDNNLayer, self).__init__()
|
|
if padding < 0:
|
|
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
|
|
kernel_size)
|
|
padding = (kernel_size - 1) // 2 * dilation
|
|
self.linear = nn.Conv1d(in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
bias=bias)
|
|
self.nonlinear = get_nonlinear(config_str, out_channels)
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
x = self.nonlinear(x)
|
|
return x
|
|
|
|
|
|
class CAMLayer(nn.Module):
|
|
def __init__(self,
|
|
bn_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
dilation,
|
|
bias,
|
|
reduction=2):
|
|
super(CAMLayer, self).__init__()
|
|
self.linear_local = nn.Conv1d(bn_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
bias=bias)
|
|
self.linear1 = nn.Conv1d(bn_channels, bn_channels // reduction, 1)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.linear2 = nn.Conv1d(bn_channels // reduction, out_channels, 1)
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
def forward(self, x):
|
|
y = self.linear_local(x)
|
|
context = x.mean(-1, keepdim=True)+self.seg_pooling(x)
|
|
context = self.relu(self.linear1(context))
|
|
m = self.sigmoid(self.linear2(context))
|
|
return y*m
|
|
|
|
def seg_pooling(self, x, seg_len=100, stype='avg'):
|
|
if stype == 'avg':
|
|
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
|
|
elif stype == 'max':
|
|
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
|
|
else:
|
|
raise ValueError('Wrong segment pooling type.')
|
|
shape = seg.shape
|
|
seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1)
|
|
seg = seg[..., :x.shape[-1]]
|
|
return seg
|
|
|
|
|
|
class CAMDenseTDNNLayer(nn.Module):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
bn_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
dilation=1,
|
|
bias=False,
|
|
config_str='batchnorm-relu',
|
|
memory_efficient=False):
|
|
super(CAMDenseTDNNLayer, self).__init__()
|
|
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
|
|
kernel_size)
|
|
padding = (kernel_size - 1) // 2 * dilation
|
|
self.memory_efficient = memory_efficient
|
|
self.nonlinear1 = get_nonlinear(config_str, in_channels)
|
|
self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False)
|
|
self.nonlinear2 = get_nonlinear(config_str, bn_channels)
|
|
self.cam_layer = CAMLayer(bn_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
bias=bias)
|
|
|
|
def bn_function(self, x):
|
|
return self.linear1(self.nonlinear1(x))
|
|
|
|
def forward(self, x):
|
|
if self.training and self.memory_efficient:
|
|
x = cp.checkpoint(self.bn_function, x)
|
|
else:
|
|
x = self.bn_function(x)
|
|
x = self.cam_layer(self.nonlinear2(x))
|
|
return x
|
|
|
|
|
|
class CAMDenseTDNNBlock(nn.ModuleList):
|
|
def __init__(self,
|
|
num_layers,
|
|
in_channels,
|
|
out_channels,
|
|
bn_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
dilation=1,
|
|
bias=False,
|
|
config_str='batchnorm-relu',
|
|
memory_efficient=False):
|
|
super(CAMDenseTDNNBlock, self).__init__()
|
|
for i in range(num_layers):
|
|
layer = CAMDenseTDNNLayer(in_channels=in_channels + i * out_channels,
|
|
out_channels=out_channels,
|
|
bn_channels=bn_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
dilation=dilation,
|
|
bias=bias,
|
|
config_str=config_str,
|
|
memory_efficient=memory_efficient)
|
|
self.add_module('tdnnd%d' % (i + 1), layer)
|
|
|
|
def forward(self, x):
|
|
for layer in self:
|
|
x = torch.cat([x, layer(x)], dim=1)
|
|
return x
|
|
|
|
|
|
class TransitLayer(nn.Module):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
bias=True,
|
|
config_str='batchnorm-relu'):
|
|
super(TransitLayer, self).__init__()
|
|
self.nonlinear = get_nonlinear(config_str, in_channels)
|
|
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
|
|
|
|
def forward(self, x):
|
|
x = self.nonlinear(x)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class DenseLayer(nn.Module):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
bias=False,
|
|
config_str='batchnorm-relu'):
|
|
super(DenseLayer, self).__init__()
|
|
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
|
|
self.nonlinear = get_nonlinear(config_str, out_channels)
|
|
|
|
def forward(self, x):
|
|
if len(x.shape) == 2:
|
|
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1)
|
|
else:
|
|
x = self.linear(x)
|
|
x = self.nonlinear(x)
|
|
return x
|
|
|
|
|
|
class BasicResBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
super(BasicResBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(in_planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=(stride, 1),
|
|
padding=1,
|
|
bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
|
|
self.shortcut = nn.Sequential()
|
|
if stride != 1 or in_planes != self.expansion * planes:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_planes,
|
|
self.expansion * planes,
|
|
kernel_size=1,
|
|
stride=(stride, 1),
|
|
bias=False),
|
|
nn.BatchNorm2d(self.expansion * planes))
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = self.bn2(self.conv2(out))
|
|
out += self.shortcut(x)
|
|
out = F.relu(out)
|
|
return out |