File size: 1,895 Bytes
0f60bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import torch
from torch import LongTensor, FloatTensor
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread

tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.bfloat16)


class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: LongTensor, scores: FloatTensor, **kwargs) -> bool:
        stop_ids=[29,0]
        for stop_id in stop_ids:
            if input_ids[0][-1]==stop_id:
                return True
        return False

def predict(message, history):
    try:
        history_transformer_format = history+[[message, ""]]
        stop=StopOnTokens()

        messages="".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) for item in history_transformer_format])


        model_inputs =tokenizer([messages], return_tensors="pt")
        streamer=TextIteratorStreamer(
            tokenizer,
            timeout=10.,
            skip_prompt=True,
            skip_special_tokens=True
        )

        generate_kwargs=dict(
            model_inputs,
            streamer=streamer,
            max_new_tokens=1024,
            do_sample=True,
            top_p=0.95,
            top_k=1000,
            temperature=1.0,
            num_beams=1,
            stopping_criteria=StoppingCriteriaList([stop])
        )

        t=Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()

        partical_message=""
        for new_token in streamer:
            if new_token !='<':
                partical_message+=new_token
                yield partical_message
    except Exception as e:
        yield "Sorry, I don't understand that."


gr.ChatInterface(predict).queue().launch()