File size: 4,762 Bytes
51a7d9e
 
 
 
bd34f0b
51a7d9e
edb9e8a
9a6b8ed
 
51a7d9e
 
9875f2e
1ec2e60
f201032
51a7d9e
23d16e2
51a7d9e
bd34f0b
 
 
9875f2e
bd34f0b
 
 
 
 
51a7d9e
2024746
 
 
 
 
 
 
 
 
 
 
 
 
651de2e
2024746
 
 
8830af9
9a6b8ed
51a7d9e
9a6b8ed
 
 
 
3f6e58a
51a7d9e
76f3d4e
9a6b8ed
76f3d4e
 
 
 
 
 
651de2e
 
82b85f5
9a6b8ed
51a7d9e
bd34f0b
fd6304d
 
51a7d9e
 
 
 
 
bd34f0b
 
3b9cb87
bd34f0b
639e063
edb9e8a
bd34f0b
edb9e8a
bd34f0b
 
 
51a7d9e
 
 
9a6b8ed
51a7d9e
edb9e8a
 
 
51a7d9e
edb9e8a
 
 
 
51a7d9e
a3e36c2
51a7d9e
781217c
51a7d9e
 
 
 
 
 
579ca70
 
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
ef2eb9e
51a7d9e
 
 
bd34f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
82b85f5
51a7d9e
 
 
 
9a6b8ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
import random
from datasets import load_dataset

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "DataPilot/Llama3-ArrowSE-8B-v0.3"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODEL_ID.split("/")[-1]

TITLE = "<h1><center>New japanese LLM model webui</center></h1>"

DESCRIPTION = f"""
<h3>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></h3>
<center>
<p>DataPilot/Llama3-ArrowSE-8B-v0.3 is the large language model built by DataPilot.
<br>
Feel free to test without log.
</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
.chatbox .messages .message.user {
    background-color: #e1f5fe;
}
.chatbox .messages .message.bot {
    background-color: #eeeeee;
}
"""

# モデルとトークナイザーの読み込み
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16,
    device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# データセットをロードしてスプリットを確認
dataset = load_dataset("elyza/ELYZA-tasks-100")
print(dataset)

# 使用するスプリット名を確認
split_name = "train" if "train" in dataset else "test"  # デフォルトをtrainにし、なければtestにフォールバック

# 適切なスプリットから10個の例を取得
examples_list = list(dataset[split_name])  # スプリットをリストに変換
examples = random.sample(examples_list, 10)  # リストからランダムに10個選択
example_inputs = [[example['input']] for example in examples]  # ネストされたリストに変換

@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = []
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(input_ids, return_tensors="pt").to(0)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        inputs, 
        streamer=streamer,
        top_k=top_k,
        top_p=top_p,
        repetition_penalty=penalty,
        max_new_tokens=max_new_tokens, 
        do_sample=True, 
        temperature=temperature,
        eos_token_id=[128001, 128009],
    )
    
    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

chatbot = gr.Chatbot(height=500)

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        theme="soft",
        retry_btn=None,
        undo_btn="Delete Previous",
        clear_btn="Clear",
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.8,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=example_inputs,  # ネストされたリストを渡す
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()