File size: 4,640 Bytes
51a7d9e
 
 
 
bd34f0b
51a7d9e
edb9e8a
51a7d9e
 
 
5f2b348
1ec2e60
f201032
51a7d9e
5f2b348
51a7d9e
bd34f0b
 
 
5f2b348
bd34f0b
 
 
 
 
51a7d9e
2024746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8830af9
51a7d9e
 
69855bc
bd34f0b
51a7d9e
 
3f6e58a
51a7d9e
 
bd34f0b
fd6304d
 
51a7d9e
 
 
 
 
33e87c8
3b9cb87
bd34f0b
 
3b9cb87
bd34f0b
639e063
edb9e8a
bd34f0b
edb9e8a
bd34f0b
 
 
51a7d9e
 
 
ef2eb9e
51a7d9e
edb9e8a
 
 
51a7d9e
edb9e8a
 
 
 
51a7d9e
 
 
a3e36c2
51a7d9e
781217c
51a7d9e
 
 
 
 
 
579ca70
 
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
ef2eb9e
51a7d9e
 
 
bd34f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
 
f193306
0e40292
 
 
51a7d9e
 
 
 
 
16e5a54
51a7d9e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread


HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "DataPilot/Llama3-ArrowSE-8B-v0.3"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODEL_ID.split("/")[-1]

TITLE = "<h1><center>DataPilot/Llama3-ArrowSE-8B-v0.3 webui</center></h1>"

DESCRIPTION = f"""
<h3>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></h3>
<center>
<p>DataPilot/Llama3-ArrowSE-8B-v0.3 is the large language model built by Datapolot.
<br>
Feel free to test without log.
</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
.chatbox .messages .message.user {
    background-color: #e1f5fe;
}
.chatbox .messages .message.bot {
    background-color: #eeeeee;
}
"""


model = AutoModelForCausalLM.from_pretrained(
          MODEL_ID,
          torch_dtype=torch.float16,
          device_map="auto",
        )
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = []
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
    conversation.append({"role": "user", "content": message})

    #print(f"Conversation is -\n{conversation}")
    
    input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(input_ids, return_tensors="pt").to(0)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        inputs, 
        streamer=streamer,
        top_k=top_k,
        top_p=top_p,
        repetition_penalty=penalty,
        max_new_tokens=max_new_tokens, 
        do_sample=True, 
        temperature=temperature,
        eos_token_id = [128001, 128009],
    )
    
    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer



chatbot = gr.Chatbot(height=500)

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        theme="soft",
        retry_btn=None,
        undo_btn="Delete Previous",
        clear_btn="Clear",
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.8,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["超能力を持つ主人公のSF物語のシナリオを考えてください。伏線の設定、テーマやログラインを理論的に使用してください"],
            ["子供の夏休みの自由研究のための、5つのアイデアと、その手法を簡潔に教えてください。"],
            ["パズルゲームのスクリプト作成のためにアドバイスお願いします"],
            ["マークダウン記法にて、ブロック崩しのゲーム作成の教科書作成してください"],
        ],
        cache_examples=False,
    )



if __name__ == "__main__":
    demo.launch()