Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,640 Bytes
51a7d9e bd34f0b 51a7d9e edb9e8a 51a7d9e 5f2b348 1ec2e60 f201032 51a7d9e 5f2b348 51a7d9e bd34f0b 5f2b348 bd34f0b 51a7d9e 2024746 8830af9 51a7d9e 69855bc bd34f0b 51a7d9e 3f6e58a 51a7d9e bd34f0b fd6304d 51a7d9e 33e87c8 3b9cb87 bd34f0b 3b9cb87 bd34f0b 639e063 edb9e8a bd34f0b edb9e8a bd34f0b 51a7d9e ef2eb9e 51a7d9e edb9e8a 51a7d9e edb9e8a 51a7d9e a3e36c2 51a7d9e 781217c 51a7d9e 579ca70 51a7d9e ef2eb9e 51a7d9e bd34f0b 51a7d9e f193306 0e40292 51a7d9e 16e5a54 51a7d9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "DataPilot/Llama3-ArrowSE-8B-v0.3"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "<h1><center>DataPilot/Llama3-ArrowSE-8B-v0.3 webui</center></h1>"
DESCRIPTION = f"""
<h3>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></h3>
<center>
<p>DataPilot/Llama3-ArrowSE-8B-v0.3 is the large language model built by Datapolot.
<br>
Feel free to test without log.
</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.chatbox .messages .message.user {
background-color: #e1f5fe;
}
.chatbox .messages .message.bot {
background-color: #eeeeee;
}
"""
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message})
#print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_ids, return_tensors="pt").to(0)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
top_k=top_k,
top_p=top_p,
repetition_penalty=penalty,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id = [128001, 128009],
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=500)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
theme="soft",
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
examples=[
["超能力を持つ主人公のSF物語のシナリオを考えてください。伏線の設定、テーマやログラインを理論的に使用してください"],
["子供の夏休みの自由研究のための、5つのアイデアと、その手法を簡潔に教えてください。"],
["パズルゲームのスクリプト作成のためにアドバイスお願いします"],
["マークダウン記法にて、ブロック崩しのゲーム作成の教科書作成してください"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()
|