Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from PIL import Image | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import os | |
from threading import Thread | |
import random | |
from datasets import load_dataset | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MODEL_ID = "TeamDelta/mistral-yuki-7B" | |
MODELS = os.environ.get("MODELS") | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
TITLE = "<h1><center>New japanese LLM model webui</center></h1>" | |
DESCRIPTION = f""" | |
<h3>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></h3> | |
<center> | |
<p>TeamDelta/mistral-yuki-7B is the large language model built by Teamdelta. | |
<br> | |
Feel free to test without log. | |
</p> | |
</center> | |
""" | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
.chatbox .messages .message.user { | |
background-color: #e1f5fe; | |
} | |
.chatbox .messages .message.bot { | |
background-color: #eeeeee; | |
} | |
""" | |
# モデルとトークナイザーの読み込み | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
# データセットをロードしてスプリットを確認 | |
dataset = load_dataset("elyza/ELYZA-tasks-100") | |
print(dataset) | |
# 使用するスプリット名を確認 | |
split_name = "train" if "train" in dataset else "test" # デフォルトをtrainにし、なければtestにフォールバック | |
# 適切なスプリットから10個の例を取得 | |
examples_list = list(dataset[split_name]) # スプリットをリストに変換 | |
examples = random.sample(examples_list, 10) # リストからランダムに10個選択 | |
example_inputs = [[example['input']] for example in examples] # ネストされたリストに変換 | |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): | |
print(f'message is - {message}') | |
print(f'history is - {history}') | |
conversation = [] | |
for prompt, answer in history: | |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer(input_ids, return_tensors="pt").to(0) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=penalty, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=[128001, 128009], | |
) | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
chatbot = gr.Chatbot(height=500) | |
with gr.Blocks(css=CSS) as demo: | |
gr.HTML(TITLE) | |
gr.HTML(DESCRIPTION) | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
theme="soft", | |
retry_btn=None, | |
undo_btn="Delete Previous", | |
clear_btn="Clear", | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=1024, | |
label="Max new tokens", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.8, | |
label="top_p", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=20, | |
label="top_k", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0, | |
label="Repetition penalty", | |
render=False, | |
), | |
], | |
examples=example_inputs, # ネストされたリストを渡す | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() |