import torch from PIL import Image import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import os from threading import Thread import random from datasets import load_dataset HF_TOKEN = os.environ.get("HF_TOKEN", None) MODEL_ID = "aixsatoshi/Meta-Llama-3.1-8B-Instruct-plus-Swallow-b" MODELS = os.environ.get("MODELS") MODEL_NAME = MODEL_ID.split("/")[-1] TITLE = "

New japanese LLM model webui

" DESCRIPTION = f"""

MODEL: {MODEL_NAME}

aixsatoshi/Meta-Llama-3.1-8B-Instruct-plus-Swallow is the merged model.
Feel free to test without log.

""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } .chatbox .messages .message.user { background-color: #e1f5fe; } .chatbox .messages .message.bot { background-color: #eeeeee; } """ # モデルとトークナイザーの読み込み model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float16, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) # データセットをロードしてスプリットを確認 dataset = load_dataset("elyza/ELYZA-tasks-100") print(dataset) # 使用するスプリット名を確認 split_name = "train" if "train" in dataset else "test" # デフォルトをtrainにし、なければtestにフォールバック # 適切なスプリットから10個の例を取得 examples_list = list(dataset[split_name]) # スプリットをリストに変換 examples = random.sample(examples_list, 10) # リストからランダムに10個選択 example_inputs = [[example['input']] for example in examples] # ネストされたリストに変換 @spaces.GPU def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): print(f'message is - {message}') print(f'history is - {history}') conversation = [] for prompt, answer in history: conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) inputs = tokenizer(input_ids, return_tensors="pt").to(0) streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( inputs, streamer=streamer, top_k=top_k, top_p=top_p, repetition_penalty=penalty, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=[128001, 128009], ) thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer chatbot = gr.Chatbot(height=500) with gr.Blocks(css=CSS) as demo: gr.HTML(TITLE) gr.HTML(DESCRIPTION) gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, theme="soft", retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False, ), gr.Slider( minimum=128, maximum=4096, step=1, value=1024, label="Max new tokens", render=False, ), gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=0.8, label="top_p", render=False, ), gr.Slider( minimum=1, maximum=20, step=1, value=20, label="top_k", render=False, ), gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Repetition penalty", render=False, ), ], examples=example_inputs, # ネストされたリストを渡す cache_examples=False, ) if __name__ == "__main__": demo.launch()