import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
import random
from datasets import load_dataset
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "aixsatoshi/Meta-Llama-3.1-8B-Instruct-plus-Swallow-b"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "
New japanese LLM model webui
"
DESCRIPTION = f"""
aixsatoshi/Meta-Llama-3.1-8B-Instruct-plus-Swallow is the merged model.
Feel free to test without log.
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.chatbox .messages .message.user {
background-color: #e1f5fe;
}
.chatbox .messages .message.bot {
background-color: #eeeeee;
}
"""
# モデルとトークナイザーの読み込み
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# データセットをロードしてスプリットを確認
dataset = load_dataset("elyza/ELYZA-tasks-100")
print(dataset)
# 使用するスプリット名を確認
split_name = "train" if "train" in dataset else "test" # デフォルトをtrainにし、なければtestにフォールバック
# 適切なスプリットから10個の例を取得
examples_list = list(dataset[split_name]) # スプリットをリストに変換
examples = random.sample(examples_list, 10) # リストからランダムに10個選択
example_inputs = [[example['input']] for example in examples] # ネストされたリストに変換
@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_ids, return_tensors="pt").to(0)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
top_k=top_k,
top_p=top_p,
repetition_penalty=penalty,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=[128001, 128009],
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=500)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
theme="soft",
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
examples=example_inputs, # ネストされたリストを渡す
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()