from huggingface_hub import from_pretrained_fastai | |
import gradio as gr | |
from fastai.vision.all import * | |
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" | |
repo_id = "aj-data/Practica01_00" | |
learner = from_pretrained_fastai(repo_id) | |
labels = learner.dls.vocab | |
# Definimos una función que se encarga de llevar a cabo las predicciones | |
def predict(img): | |
#img = PILImage.create(img) | |
pred,pred_idx,probs = learner.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
# Creamos la interfaz y la lanzamos. | |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['20109.jpg','20112.jpg']).launch(share=False) |