Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,10 +4,24 @@ import torchaudio
|
|
| 4 |
import warnings
|
| 5 |
import fasttext # Import fastText for language detection
|
| 6 |
import pandas as pd
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Suppress specific warnings related to PySoundFile fallback
|
| 9 |
warnings.filterwarnings("ignore", category=UserWarning, message="PySoundFile failed.*")
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# Load models
|
| 12 |
whisper_model_name = "openai/whisper-large"
|
| 13 |
processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
|
@@ -16,9 +30,6 @@ whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_na
|
|
| 16 |
# Load Helsinki-NLP's opus-100 translation model
|
| 17 |
translation_model = pipeline("translation", model="Helsinki-NLP/opus-mt-ROMANCE-en") # A multilingual model from Opus-100
|
| 18 |
|
| 19 |
-
# Load the fastText language detection model
|
| 20 |
-
lang_model = fasttext.load_model('./lid.176.bin') # This is the pre-trained model for language detection
|
| 21 |
-
|
| 22 |
# Initialize history tracking
|
| 23 |
history_data = [] # List to track transcription, detected language, translation, and confidence score
|
| 24 |
|
|
|
|
| 4 |
import warnings
|
| 5 |
import fasttext # Import fastText for language detection
|
| 6 |
import pandas as pd
|
| 7 |
+
import urllib.request
|
| 8 |
+
import os
|
| 9 |
|
| 10 |
# Suppress specific warnings related to PySoundFile fallback
|
| 11 |
warnings.filterwarnings("ignore", category=UserWarning, message="PySoundFile failed.*")
|
| 12 |
|
| 13 |
+
# Define a temporary path to store the large model file
|
| 14 |
+
temp_model_path = '/tmp/lid.176.bin'
|
| 15 |
+
|
| 16 |
+
# Check if the model already exists in the temporary path, and download it if not
|
| 17 |
+
if not os.path.exists(temp_model_path):
|
| 18 |
+
# Download the file from Hugging Face URL
|
| 19 |
+
url = "https://huggingface.co/julien-c/fasttext-language-id/resolve/0266da4549434de56667387618bc67dc6d2670ef/lid.176.bin"
|
| 20 |
+
urllib.request.urlretrieve(url, temp_model_path)
|
| 21 |
+
|
| 22 |
+
# Load the model from the temporary path
|
| 23 |
+
lang_model = fasttext.load_model(temp_model_path)
|
| 24 |
+
|
| 25 |
# Load models
|
| 26 |
whisper_model_name = "openai/whisper-large"
|
| 27 |
processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
|
|
|
| 30 |
# Load Helsinki-NLP's opus-100 translation model
|
| 31 |
translation_model = pipeline("translation", model="Helsinki-NLP/opus-mt-ROMANCE-en") # A multilingual model from Opus-100
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
# Initialize history tracking
|
| 34 |
history_data = [] # List to track transcription, detected language, translation, and confidence score
|
| 35 |
|