ajeetkumar01
commited on
Commit
•
1b67f7c
1
Parent(s):
0f0cf5d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from keras.models import load_model
|
3 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
4 |
+
import contractions
|
5 |
+
import re
|
6 |
+
from nltk.corpus import stopwords
|
7 |
+
import json
|
8 |
+
|
9 |
+
# Set page configuration
|
10 |
+
st.set_page_config(page_title="Mental Health Classification")
|
11 |
+
|
12 |
+
# Page title
|
13 |
+
st.title("Mental Health Classification")
|
14 |
+
|
15 |
+
# Load the tokenizer (make sure the tokenizer file is in the correct path)
|
16 |
+
def load_tokenizer():
|
17 |
+
with open('tokenizer.json') as f:
|
18 |
+
tokenizer_json = json.load(f)
|
19 |
+
return tokenizer_from_json(tokenizer_json)
|
20 |
+
|
21 |
+
# Preprocess text function
|
22 |
+
def preprocess_text(input_text, tokenizer):
|
23 |
+
text = contractions.fix(input_text)
|
24 |
+
text = re.sub(r"[^a-z\s]", "", text)
|
25 |
+
text = text.lower()
|
26 |
+
# Tokenize the words
|
27 |
+
words = text.split()
|
28 |
+
# Remove stopwords
|
29 |
+
stop_words = set(stopwords.words('english'))
|
30 |
+
words = [word for word in words if word not in stop_words]
|
31 |
+
clean_text = " ".join(words)
|
32 |
+
# Convert to sequences
|
33 |
+
sequences = tokenizer.texts_to_sequences([clean_text])
|
34 |
+
return sequences
|
35 |
+
|
36 |
+
def main():
|
37 |
+
# Text input for mental state
|
38 |
+
input_text = st.text_input("Enter the Mental state here...")
|
39 |
+
|
40 |
+
# Submit button
|
41 |
+
submit_button = st.button("Classify")
|
42 |
+
|
43 |
+
if submit_button and input_text:
|
44 |
+
# Load the model and tokenizer
|
45 |
+
model = load_model("mental_health_model.h5")
|
46 |
+
tokenizer = load_tokenizer()
|
47 |
+
|
48 |
+
# Preprocess the input text
|
49 |
+
processed_text = preprocess_text(input_text, tokenizer)
|
50 |
+
|
51 |
+
# Make prediction
|
52 |
+
response = model.predict(processed_text)
|
53 |
+
predicted_class = response.argmax(axis=-1)
|
54 |
+
# Display the prediction result
|
55 |
+
st.write("Predicted Mental State:", predicted_class)
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
main()
|