from transformers import pipeline from PIL import Image import gradio as gr # Load the Hugging Face depth estimation pipeline pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") def estimate_depth(image): # Perform depth estimation on the input image depth = pipe(image)["depth"] return depth # Create a Gradio interface iface = gr.Interface( fn=estimate_depth, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), title="Depth Estimation", description="Upload an image to get its depth estimation map." ) # Launch the Gradio app iface.launch() """ from transformers import pipeline from PIL import Image import requests # load pipe pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") # load image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) # inference depth = pipe(image)["depth"] """