Spaces:
Runtime error
Runtime error
File size: 14,203 Bytes
159f437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# Copyright (c) Facebook, Inc. and its affiliates.
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import os
COLORS = ((np.random.rand(1300, 3) * 0.4 + 0.6) * 255).astype(
np.uint8).reshape(1300, 1, 1, 3)
def _get_color_image(heatmap):
heatmap = heatmap.reshape(
heatmap.shape[0], heatmap.shape[1], heatmap.shape[2], 1)
if heatmap.shape[0] == 1:
color_map = (heatmap * np.ones((1, 1, 1, 3), np.uint8) * 255).max(
axis=0).astype(np.uint8) # H, W, 3
else:
color_map = (heatmap * COLORS[:heatmap.shape[0]]).max(axis=0).astype(np.uint8) # H, W, 3
return color_map
def _blend_image(image, color_map, a=0.7):
color_map = cv2.resize(color_map, (image.shape[1], image.shape[0]))
ret = np.clip(image * (1 - a) + color_map * a, 0, 255).astype(np.uint8)
return ret
def _blend_image_heatmaps(image, color_maps, a=0.7):
merges = np.zeros((image.shape[0], image.shape[1], 3), np.float32)
for color_map in color_maps:
color_map = cv2.resize(color_map, (image.shape[1], image.shape[0]))
merges = np.maximum(merges, color_map)
ret = np.clip(image * (1 - a) + merges * a, 0, 255).astype(np.uint8)
return ret
def _decompose_level(x, shapes_per_level, N):
'''
x: LNHiWi x C
'''
x = x.view(x.shape[0], -1)
ret = []
st = 0
for l in range(len(shapes_per_level)):
ret.append([])
h = shapes_per_level[l][0].int().item()
w = shapes_per_level[l][1].int().item()
for i in range(N):
ret[l].append(x[st + h * w * i:st + h * w * (i + 1)].view(
h, w, -1).permute(2, 0, 1))
st += h * w * N
return ret
def _imagelist_to_tensor(images):
images = [x for x in images]
image_sizes = [x.shape[-2:] for x in images]
h = max([size[0] for size in image_sizes])
w = max([size[1] for size in image_sizes])
S = 32
h, w = ((h - 1) // S + 1) * S, ((w - 1) // S + 1) * S
images = [F.pad(x, (0, w - x.shape[2], 0, h - x.shape[1], 0, 0)) \
for x in images]
images = torch.stack(images)
return images
def _ind2il(ind, shapes_per_level, N):
r = ind
l = 0
S = 0
while r - S >= N * shapes_per_level[l][0] * shapes_per_level[l][1]:
S += N * shapes_per_level[l][0] * shapes_per_level[l][1]
l += 1
i = (r - S) // (shapes_per_level[l][0] * shapes_per_level[l][1])
return i, l
def debug_train(
images, gt_instances, flattened_hms, reg_targets, labels, pos_inds,
shapes_per_level, locations, strides):
'''
images: N x 3 x H x W
flattened_hms: LNHiWi x C
shapes_per_level: L x 2 [(H_i, W_i)]
locations: LNHiWi x 2
'''
reg_inds = torch.nonzero(
reg_targets.max(dim=1)[0] > 0).squeeze(1)
N = len(images)
images = _imagelist_to_tensor(images)
repeated_locations = [torch.cat([loc] * N, dim=0) \
for loc in locations]
locations = torch.cat(repeated_locations, dim=0)
gt_hms = _decompose_level(flattened_hms, shapes_per_level, N)
masks = flattened_hms.new_zeros((flattened_hms.shape[0], 1))
masks[pos_inds] = 1
masks = _decompose_level(masks, shapes_per_level, N)
for i in range(len(images)):
image = images[i].detach().cpu().numpy().transpose(1, 2, 0)
color_maps = []
for l in range(len(gt_hms)):
color_map = _get_color_image(
gt_hms[l][i].detach().cpu().numpy())
color_maps.append(color_map)
cv2.imshow('gthm_{}'.format(l), color_map)
blend = _blend_image_heatmaps(image.copy(), color_maps)
if gt_instances is not None:
bboxes = gt_instances[i].gt_boxes.tensor
for j in range(len(bboxes)):
bbox = bboxes[j]
cv2.rectangle(
blend,
(int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
(0, 0, 255), 3, cv2.LINE_AA)
for j in range(len(pos_inds)):
image_id, l = _ind2il(pos_inds[j], shapes_per_level, N)
if image_id != i:
continue
loc = locations[pos_inds[j]]
cv2.drawMarker(
blend, (int(loc[0]), int(loc[1])), (0, 255, 255),
markerSize=(l + 1) * 16)
for j in range(len(reg_inds)):
image_id, l = _ind2il(reg_inds[j], shapes_per_level, N)
if image_id != i:
continue
ltrb = reg_targets[reg_inds[j]]
ltrb *= strides[l]
loc = locations[reg_inds[j]]
bbox = [(loc[0] - ltrb[0]), (loc[1] - ltrb[1]),
(loc[0] + ltrb[2]), (loc[1] + ltrb[3])]
cv2.rectangle(
blend,
(int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
(255, 0, 0), 1, cv2.LINE_AA)
cv2.circle(blend, (int(loc[0]), int(loc[1])), 2, (255, 0, 0), -1)
cv2.imshow('blend', blend)
cv2.waitKey()
def debug_test(
images, logits_pred, reg_pred, agn_hm_pred=[], preds=[],
vis_thresh=0.3, debug_show_name=False, mult_agn=False):
'''
images: N x 3 x H x W
class_target: LNHiWi x C
cat_agn_heatmap: LNHiWi
shapes_per_level: L x 2 [(H_i, W_i)]
'''
N = len(images)
for i in range(len(images)):
image = images[i].detach().cpu().numpy().transpose(1, 2, 0)
result = image.copy().astype(np.uint8)
pred_image = image.copy().astype(np.uint8)
color_maps = []
L = len(logits_pred)
for l in range(L):
if logits_pred[0] is not None:
stride = min(image.shape[0], image.shape[1]) / min(
logits_pred[l][i].shape[1], logits_pred[l][i].shape[2])
else:
stride = min(image.shape[0], image.shape[1]) / min(
agn_hm_pred[l][i].shape[1], agn_hm_pred[l][i].shape[2])
stride = stride if stride < 60 else 64 if stride < 100 else 128
if logits_pred[0] is not None:
if mult_agn:
logits_pred[l][i] = logits_pred[l][i] * agn_hm_pred[l][i]
color_map = _get_color_image(
logits_pred[l][i].detach().cpu().numpy())
color_maps.append(color_map)
cv2.imshow('predhm_{}'.format(l), color_map)
if debug_show_name:
from detectron2.data.datasets.lvis_v1_categories import LVIS_CATEGORIES
cat2name = [x['name'] for x in LVIS_CATEGORIES]
for j in range(len(preds[i].scores) if preds is not None else 0):
if preds[i].scores[j] > vis_thresh:
bbox = preds[i].proposal_boxes[j] \
if preds[i].has('proposal_boxes') else \
preds[i].pred_boxes[j]
bbox = bbox.tensor[0].detach().cpu().numpy().astype(np.int32)
cat = int(preds[i].pred_classes[j]) \
if preds[i].has('pred_classes') else 0
cl = COLORS[cat, 0, 0]
cv2.rectangle(
pred_image, (int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
(int(cl[0]), int(cl[1]), int(cl[2])), 2, cv2.LINE_AA)
if debug_show_name:
txt = '{}{:.1f}'.format(
cat2name[cat] if cat > 0 else '',
preds[i].scores[j])
font = cv2.FONT_HERSHEY_SIMPLEX
cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
cv2.rectangle(
pred_image,
(int(bbox[0]), int(bbox[1] - cat_size[1] - 2)),
(int(bbox[0] + cat_size[0]), int(bbox[1] - 2)),
(int(cl[0]), int(cl[1]), int(cl[2])), -1)
cv2.putText(
pred_image, txt, (int(bbox[0]), int(bbox[1] - 2)),
font, 0.5, (0, 0, 0), thickness=1, lineType=cv2.LINE_AA)
if agn_hm_pred[l] is not None:
agn_hm_ = agn_hm_pred[l][i, 0, :, :, None].detach().cpu().numpy()
agn_hm_ = (agn_hm_ * np.array([255, 255, 255]).reshape(
1, 1, 3)).astype(np.uint8)
cv2.imshow('agn_hm_{}'.format(l), agn_hm_)
blend = _blend_image_heatmaps(image.copy(), color_maps)
cv2.imshow('blend', blend)
cv2.imshow('preds', pred_image)
cv2.waitKey()
global cnt
cnt = 0
def debug_second_stage(images, instances, proposals=None, vis_thresh=0.3,
save_debug=False, debug_show_name=False, image_labels=[],
save_debug_path='output/save_debug/',
bgr=False):
images = _imagelist_to_tensor(images)
if 'COCO' in save_debug_path:
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
cat2name = [x['name'] for x in COCO_CATEGORIES]
else:
from detectron2.data.datasets.lvis_v1_categories import LVIS_CATEGORIES
cat2name = ['({}){}'.format(x['frequency'], x['name']) \
for x in LVIS_CATEGORIES]
for i in range(len(images)):
image = images[i].detach().cpu().numpy().transpose(1, 2, 0).astype(np.uint8).copy()
if bgr:
image = image[:, :, ::-1].copy()
if instances[i].has('gt_boxes'):
bboxes = instances[i].gt_boxes.tensor.cpu().numpy()
scores = np.ones(bboxes.shape[0])
cats = instances[i].gt_classes.cpu().numpy()
else:
bboxes = instances[i].pred_boxes.tensor.cpu().numpy()
scores = instances[i].scores.cpu().numpy()
cats = instances[i].pred_classes.cpu().numpy()
for j in range(len(bboxes)):
if scores[j] > vis_thresh:
bbox = bboxes[j]
cl = COLORS[cats[j], 0, 0]
cl = (int(cl[0]), int(cl[1]), int(cl[2]))
cv2.rectangle(
image,
(int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
cl, 2, cv2.LINE_AA)
if debug_show_name:
cat = cats[j]
txt = '{}{:.1f}'.format(
cat2name[cat] if cat > 0 else '',
scores[j])
font = cv2.FONT_HERSHEY_SIMPLEX
cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
cv2.rectangle(
image,
(int(bbox[0]), int(bbox[1] - cat_size[1] - 2)),
(int(bbox[0] + cat_size[0]), int(bbox[1] - 2)),
(int(cl[0]), int(cl[1]), int(cl[2])), -1)
cv2.putText(
image, txt, (int(bbox[0]), int(bbox[1] - 2)),
font, 0.5, (0, 0, 0), thickness=1, lineType=cv2.LINE_AA)
if proposals is not None:
proposal_image = images[i].detach().cpu().numpy().transpose(1, 2, 0).astype(np.uint8).copy()
if bgr:
proposal_image = proposal_image.copy()
else:
proposal_image = proposal_image[:, :, ::-1].copy()
bboxes = proposals[i].proposal_boxes.tensor.cpu().numpy()
if proposals[i].has('scores'):
scores = proposals[i].scores.detach().cpu().numpy()
else:
scores = proposals[i].objectness_logits.detach().cpu().numpy()
# selected = -1
# if proposals[i].has('image_loss'):
# selected = proposals[i].image_loss.argmin()
if proposals[i].has('selected'):
selected = proposals[i].selected
else:
selected = [-1 for _ in range(len(bboxes))]
for j in range(len(bboxes)):
if scores[j] > vis_thresh or selected[j] >= 0:
bbox = bboxes[j]
cl = (209, 159, 83)
th = 2
if selected[j] >= 0:
cl = (0, 0, 0xa4)
th = 4
cv2.rectangle(
proposal_image,
(int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
cl, th, cv2.LINE_AA)
if selected[j] >= 0 and debug_show_name:
cat = selected[j].item()
txt = '{}'.format(cat2name[cat])
font = cv2.FONT_HERSHEY_SIMPLEX
cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
cv2.rectangle(
proposal_image,
(int(bbox[0]), int(bbox[1] - cat_size[1] - 2)),
(int(bbox[0] + cat_size[0]), int(bbox[1] - 2)),
(int(cl[0]), int(cl[1]), int(cl[2])), -1)
cv2.putText(
proposal_image, txt,
(int(bbox[0]), int(bbox[1] - 2)),
font, 0.5, (0, 0, 0), thickness=1,
lineType=cv2.LINE_AA)
if save_debug:
global cnt
cnt = (cnt + 1) % 5000
if not os.path.exists(save_debug_path):
os.mkdir(save_debug_path)
save_name = '{}/{:05d}.jpg'.format(save_debug_path, cnt)
if i < len(image_labels):
image_label = image_labels[i]
save_name = '{}/{:05d}'.format(save_debug_path, cnt)
for x in image_label:
class_name = cat2name[x]
save_name = save_name + '|{}'.format(class_name)
save_name = save_name + '.jpg'
cv2.imwrite(save_name, proposal_image)
else:
cv2.imshow('image', image)
if proposals is not None:
cv2.imshow('proposals', proposal_image)
cv2.waitKey() |