Detic / detic /evaluation /oideval.py
AK391
files
159f437
raw
history blame
27.1 kB
# Part of the code is from https://github.com/tensorflow/models/blob/master/research/object_detection/metrics/oid_challenge_evaluation.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
# The original code is under Apache License, Version 2.0 (the "License");
# Part of the code is from https://github.com/lvis-dataset/lvis-api/blob/master/lvis/eval.py
# Copyright (c) 2019, Agrim Gupta and Ross Girshick
# Modified by Xingyi Zhou
# This script re-implement OpenImages evaluation in detectron2
# The code is from https://github.com/xingyizhou/UniDet/blob/master/projects/UniDet/unidet/evaluation/oideval.py
# The original code is under Apache-2.0 License
# Copyright (c) Facebook, Inc. and its affiliates.
import os
import datetime
import logging
import itertools
from collections import OrderedDict
from collections import defaultdict
import copy
import json
import numpy as np
import torch
from tabulate import tabulate
from lvis.lvis import LVIS
from lvis.results import LVISResults
import pycocotools.mask as mask_utils
from fvcore.common.file_io import PathManager
import detectron2.utils.comm as comm
from detectron2.data import MetadataCatalog
from detectron2.evaluation.coco_evaluation import instances_to_coco_json
from detectron2.utils.logger import create_small_table
from detectron2.evaluation import DatasetEvaluator
def compute_average_precision(precision, recall):
"""Compute Average Precision according to the definition in VOCdevkit.
Precision is modified to ensure that it does not decrease as recall
decrease.
Args:
precision: A float [N, 1] numpy array of precisions
recall: A float [N, 1] numpy array of recalls
Raises:
ValueError: if the input is not of the correct format
Returns:
average_precison: The area under the precision recall curve. NaN if
precision and recall are None.
"""
if precision is None:
if recall is not None:
raise ValueError("If precision is None, recall must also be None")
return np.NAN
if not isinstance(precision, np.ndarray) or not isinstance(
recall, np.ndarray):
raise ValueError("precision and recall must be numpy array")
if precision.dtype != np.float or recall.dtype != np.float:
raise ValueError("input must be float numpy array.")
if len(precision) != len(recall):
raise ValueError("precision and recall must be of the same size.")
if not precision.size:
return 0.0
if np.amin(precision) < 0 or np.amax(precision) > 1:
raise ValueError("Precision must be in the range of [0, 1].")
if np.amin(recall) < 0 or np.amax(recall) > 1:
raise ValueError("recall must be in the range of [0, 1].")
if not all(recall[i] <= recall[i + 1] for i in range(len(recall) - 1)):
raise ValueError("recall must be a non-decreasing array")
recall = np.concatenate([[0], recall, [1]])
precision = np.concatenate([[0], precision, [0]])
for i in range(len(precision) - 2, -1, -1):
precision[i] = np.maximum(precision[i], precision[i + 1])
indices = np.where(recall[1:] != recall[:-1])[0] + 1
average_precision = np.sum(
(recall[indices] - recall[indices - 1]) * precision[indices])
return average_precision
class OIDEval:
def __init__(
self, lvis_gt, lvis_dt, iou_type="bbox", expand_pred_label=False,
oid_hierarchy_path='./datasets/oid/annotations/challenge-2019-label500-hierarchy.json'):
"""Constructor for OIDEval.
Args:
lvis_gt (LVIS class instance, or str containing path of annotation file)
lvis_dt (LVISResult class instance, or str containing path of result file,
or list of dict)
iou_type (str): segm or bbox evaluation
"""
self.logger = logging.getLogger(__name__)
if iou_type not in ["bbox", "segm"]:
raise ValueError("iou_type: {} is not supported.".format(iou_type))
if isinstance(lvis_gt, LVIS):
self.lvis_gt = lvis_gt
elif isinstance(lvis_gt, str):
self.lvis_gt = LVIS(lvis_gt)
else:
raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))
if isinstance(lvis_dt, LVISResults):
self.lvis_dt = lvis_dt
elif isinstance(lvis_dt, (str, list)):
# self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt, max_dets=-1)
self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt)
else:
raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))
if expand_pred_label:
oid_hierarchy = json.load(open(oid_hierarchy_path, 'r'))
cat_info = self.lvis_gt.dataset['categories']
freebase2id = {x['freebase_id']: x['id'] for x in cat_info}
id2freebase = {x['id']: x['freebase_id'] for x in cat_info}
id2name = {x['id']: x['name'] for x in cat_info}
fas = defaultdict(set)
def dfs(hierarchy, cur_id):
all_childs = set()
all_keyed_child = {}
if 'Subcategory' in hierarchy:
for x in hierarchy['Subcategory']:
childs = dfs(x, freebase2id[x['LabelName']])
all_childs.update(childs)
if cur_id != -1:
for c in all_childs:
fas[c].add(cur_id)
all_childs.add(cur_id)
return all_childs
dfs(oid_hierarchy, -1)
expanded_pred = []
id_count = 0
for d in self.lvis_dt.dataset['annotations']:
cur_id = d['category_id']
ids = [cur_id] + [x for x in fas[cur_id]]
for cat_id in ids:
new_box = copy.deepcopy(d)
id_count = id_count + 1
new_box['id'] = id_count
new_box['category_id'] = cat_id
expanded_pred.append(new_box)
print('Expanding original {} preds to {} preds'.format(
len(self.lvis_dt.dataset['annotations']),
len(expanded_pred)
))
self.lvis_dt.dataset['annotations'] = expanded_pred
self.lvis_dt._create_index()
# per-image per-category evaluation results
self.eval_imgs = defaultdict(list)
self.eval = {} # accumulated evaluation results
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self.params = Params(iou_type=iou_type) # parameters
self.results = OrderedDict()
self.ious = {} # ious between all gts and dts
self.params.img_ids = sorted(self.lvis_gt.get_img_ids())
self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids())
def _to_mask(self, anns, lvis):
for ann in anns:
rle = lvis.ann_to_rle(ann)
ann["segmentation"] = rle
def _prepare(self):
"""Prepare self._gts and self._dts for evaluation based on params."""
cat_ids = self.params.cat_ids if self.params.cat_ids else None
gts = self.lvis_gt.load_anns(
self.lvis_gt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids)
)
dts = self.lvis_dt.load_anns(
self.lvis_dt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids)
)
# convert ground truth to mask if iou_type == 'segm'
if self.params.iou_type == "segm":
self._to_mask(gts, self.lvis_gt)
self._to_mask(dts, self.lvis_dt)
for gt in gts:
self._gts[gt["image_id"], gt["category_id"]].append(gt)
# For federated dataset evaluation we will filter out all dt for an
# image which belong to categories not present in gt and not present in
# the negative list for an image. In other words detector is not penalized
# for categories about which we don't have gt information about their
# presence or absence in an image.
img_data = self.lvis_gt.load_imgs(ids=self.params.img_ids)
# per image map of categories not present in image
img_nl = {d["id"]: d["neg_category_ids"] for d in img_data}
# per image list of categories present in image
img_pl = {d["id"]: d["pos_category_ids"] for d in img_data}
# img_pl = defaultdict(set)
for ann in gts:
# img_pl[ann["image_id"]].add(ann["category_id"])
assert ann["category_id"] in img_pl[ann["image_id"]]
# print('check pos ids OK.')
for dt in dts:
img_id, cat_id = dt["image_id"], dt["category_id"]
if cat_id not in img_nl[img_id] and cat_id not in img_pl[img_id]:
continue
self._dts[img_id, cat_id].append(dt)
def evaluate(self):
"""
Run per image evaluation on given images and store results
(a list of dict) in self.eval_imgs.
"""
self.logger.info("Running per image evaluation.")
self.logger.info("Evaluate annotation type *{}*".format(self.params.iou_type))
self.params.img_ids = list(np.unique(self.params.img_ids))
if self.params.use_cats:
cat_ids = self.params.cat_ids
else:
cat_ids = [-1]
self._prepare()
self.ious = {
(img_id, cat_id): self.compute_iou(img_id, cat_id)
for img_id in self.params.img_ids
for cat_id in cat_ids
}
# loop through images, area range, max detection number
print('Evaluating ...')
self.eval_imgs = [
self.evaluate_img_google(img_id, cat_id, area_rng)
for cat_id in cat_ids
for area_rng in self.params.area_rng
for img_id in self.params.img_ids
]
def _get_gt_dt(self, img_id, cat_id):
"""Create gt, dt which are list of anns/dets. If use_cats is true
only anns/dets corresponding to tuple (img_id, cat_id) will be
used. Else, all anns/dets in image are used and cat_id is not used.
"""
if self.params.use_cats:
gt = self._gts[img_id, cat_id]
dt = self._dts[img_id, cat_id]
else:
gt = [
_ann
for _cat_id in self.params.cat_ids
for _ann in self._gts[img_id, cat_id]
]
dt = [
_ann
for _cat_id in self.params.cat_ids
for _ann in self._dts[img_id, cat_id]
]
return gt, dt
def compute_iou(self, img_id, cat_id):
gt, dt = self._get_gt_dt(img_id, cat_id)
if len(gt) == 0 and len(dt) == 0:
return []
# Sort detections in decreasing order of score.
idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in idx]
# iscrowd = [int(False)] * len(gt)
iscrowd = [int('iscrowd' in g and g['iscrowd'] > 0) for g in gt]
if self.params.iou_type == "segm":
ann_type = "segmentation"
elif self.params.iou_type == "bbox":
ann_type = "bbox"
else:
raise ValueError("Unknown iou_type for iou computation.")
gt = [g[ann_type] for g in gt]
dt = [d[ann_type] for d in dt]
# compute iou between each dt and gt region
# will return array of shape len(dt), len(gt)
ious = mask_utils.iou(dt, gt, iscrowd)
return ious
def evaluate_img_google(self, img_id, cat_id, area_rng):
gt, dt = self._get_gt_dt(img_id, cat_id)
if len(gt) == 0 and len(dt) == 0:
return None
if len(dt) == 0:
return {
"image_id": img_id,
"category_id": cat_id,
"area_rng": area_rng,
"dt_ids": [],
"dt_matches": np.array([], dtype=np.int32).reshape(1, -1),
"dt_scores": [],
"dt_ignore": np.array([], dtype=np.int32).reshape(1, -1),
'num_gt': len(gt)
}
no_crowd_inds = [i for i, g in enumerate(gt) \
if ('iscrowd' not in g) or g['iscrowd'] == 0]
crowd_inds = [i for i, g in enumerate(gt) \
if 'iscrowd' in g and g['iscrowd'] == 1]
dt_idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
if len(self.ious[img_id, cat_id]) > 0:
ious = self.ious[img_id, cat_id]
iou = ious[:, no_crowd_inds]
iou = iou[dt_idx]
ioa = ious[:, crowd_inds]
ioa = ioa[dt_idx]
else:
iou = np.zeros((len(dt_idx), 0))
ioa = np.zeros((len(dt_idx), 0))
scores = np.array([dt[i]['score'] for i in dt_idx])
num_detected_boxes = len(dt)
tp_fp_labels = np.zeros(num_detected_boxes, dtype=bool)
is_matched_to_group_of = np.zeros(num_detected_boxes, dtype=bool)
def compute_match_iou(iou):
max_overlap_gt_ids = np.argmax(iou, axis=1)
is_gt_detected = np.zeros(iou.shape[1], dtype=bool)
for i in range(num_detected_boxes):
gt_id = max_overlap_gt_ids[i]
is_evaluatable = (not tp_fp_labels[i] and
iou[i, gt_id] >= 0.5 and
not is_matched_to_group_of[i])
if is_evaluatable:
if not is_gt_detected[gt_id]:
tp_fp_labels[i] = True
is_gt_detected[gt_id] = True
def compute_match_ioa(ioa):
scores_group_of = np.zeros(ioa.shape[1], dtype=float)
tp_fp_labels_group_of = np.ones(
ioa.shape[1], dtype=float)
max_overlap_group_of_gt_ids = np.argmax(ioa, axis=1)
for i in range(num_detected_boxes):
gt_id = max_overlap_group_of_gt_ids[i]
is_evaluatable = (not tp_fp_labels[i] and
ioa[i, gt_id] >= 0.5 and
not is_matched_to_group_of[i])
if is_evaluatable:
is_matched_to_group_of[i] = True
scores_group_of[gt_id] = max(scores_group_of[gt_id], scores[i])
selector = np.where((scores_group_of > 0) & (tp_fp_labels_group_of > 0))
scores_group_of = scores_group_of[selector]
tp_fp_labels_group_of = tp_fp_labels_group_of[selector]
return scores_group_of, tp_fp_labels_group_of
if iou.shape[1] > 0:
compute_match_iou(iou)
scores_box_group_of = np.ndarray([0], dtype=float)
tp_fp_labels_box_group_of = np.ndarray([0], dtype=float)
if ioa.shape[1] > 0:
scores_box_group_of, tp_fp_labels_box_group_of = compute_match_ioa(ioa)
valid_entries = (~is_matched_to_group_of)
scores = np.concatenate(
(scores[valid_entries], scores_box_group_of))
tp_fps = np.concatenate(
(tp_fp_labels[valid_entries].astype(float),
tp_fp_labels_box_group_of))
return {
"image_id": img_id,
"category_id": cat_id,
"area_rng": area_rng,
"dt_matches": np.array([1 if x > 0 else 0 for x in tp_fps], dtype=np.int32).reshape(1, -1),
"dt_scores": [x for x in scores],
"dt_ignore": np.array([0 for x in scores], dtype=np.int32).reshape(1, -1),
'num_gt': len(gt)
}
def accumulate(self):
"""Accumulate per image evaluation results and store the result in
self.eval.
"""
self.logger.info("Accumulating evaluation results.")
if not self.eval_imgs:
self.logger.warn("Please run evaluate first.")
if self.params.use_cats:
cat_ids = self.params.cat_ids
else:
cat_ids = [-1]
num_thrs = 1
num_recalls = 1
num_cats = len(cat_ids)
num_area_rngs = 1
num_imgs = len(self.params.img_ids)
# -1 for absent categories
precision = -np.ones(
(num_thrs, num_recalls, num_cats, num_area_rngs)
)
recall = -np.ones((num_thrs, num_cats, num_area_rngs))
# Initialize dt_pointers
dt_pointers = {}
for cat_idx in range(num_cats):
dt_pointers[cat_idx] = {}
for area_idx in range(num_area_rngs):
dt_pointers[cat_idx][area_idx] = {}
# Per category evaluation
for cat_idx in range(num_cats):
Nk = cat_idx * num_area_rngs * num_imgs
for area_idx in range(num_area_rngs):
Na = area_idx * num_imgs
E = [
self.eval_imgs[Nk + Na + img_idx]
for img_idx in range(num_imgs)
]
# Remove elements which are None
E = [e for e in E if not e is None]
if len(E) == 0:
continue
dt_scores = np.concatenate([e["dt_scores"] for e in E], axis=0)
dt_idx = np.argsort(-dt_scores, kind="mergesort")
dt_scores = dt_scores[dt_idx]
dt_m = np.concatenate([e["dt_matches"] for e in E], axis=1)[:, dt_idx]
dt_ig = np.concatenate([e["dt_ignore"] for e in E], axis=1)[:, dt_idx]
num_gt = sum([e['num_gt'] for e in E])
if num_gt == 0:
continue
tps = np.logical_and(dt_m, np.logical_not(dt_ig))
fps = np.logical_and(np.logical_not(dt_m), np.logical_not(dt_ig))
tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)
fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)
dt_pointers[cat_idx][area_idx] = {
"tps": tps,
"fps": fps,
}
for iou_thr_idx, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
tp = np.array(tp)
fp = np.array(fp)
num_tp = len(tp)
rc = tp / num_gt
if num_tp:
recall[iou_thr_idx, cat_idx, area_idx] = rc[
-1
]
else:
recall[iou_thr_idx, cat_idx, area_idx] = 0
# np.spacing(1) ~= eps
pr = tp / (fp + tp + np.spacing(1))
pr = pr.tolist()
for i in range(num_tp - 1, 0, -1):
if pr[i] > pr[i - 1]:
pr[i - 1] = pr[i]
mAP = compute_average_precision(
np.array(pr, np.float).reshape(-1),
np.array(rc, np.float).reshape(-1))
precision[iou_thr_idx, :, cat_idx, area_idx] = mAP
self.eval = {
"params": self.params,
"counts": [num_thrs, num_recalls, num_cats, num_area_rngs],
"date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"precision": precision,
"recall": recall,
"dt_pointers": dt_pointers,
}
def _summarize(self, summary_type):
s = self.eval["precision"]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
# print(s.reshape(1, 1, -1, 1))
return mean_s
def summarize(self):
"""Compute and display summary metrics for evaluation results."""
if not self.eval:
raise RuntimeError("Please run accumulate() first.")
max_dets = self.params.max_dets
self.results["AP50"] = self._summarize('ap')
def run(self):
"""Wrapper function which calculates the results."""
self.evaluate()
self.accumulate()
self.summarize()
def print_results(self):
template = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} catIds={:>3s}] = {:0.3f}"
for key, value in self.results.items():
max_dets = self.params.max_dets
if "AP" in key:
title = "Average Precision"
_type = "(AP)"
else:
title = "Average Recall"
_type = "(AR)"
if len(key) > 2 and key[2].isdigit():
iou_thr = (float(key[2:]) / 100)
iou = "{:0.2f}".format(iou_thr)
else:
iou = "{:0.2f}:{:0.2f}".format(
self.params.iou_thrs[0], self.params.iou_thrs[-1]
)
cat_group_name = "all"
area_rng = "all"
print(template.format(title, _type, iou, area_rng, max_dets, cat_group_name, value))
def get_results(self):
if not self.results:
self.logger.warn("results is empty. Call run().")
return self.results
class Params:
def __init__(self, iou_type):
self.img_ids = []
self.cat_ids = []
# np.arange causes trouble. the data point on arange is slightly
# larger than the true value
self.iou_thrs = np.linspace(
0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True
)
self.google_style = True
# print('Using google style PR curve')
self.iou_thrs = self.iou_thrs[:1]
self.max_dets = 1000
self.area_rng = [
[0 ** 2, 1e5 ** 2],
]
self.area_rng_lbl = ["all"]
self.use_cats = 1
self.iou_type = iou_type
class OIDEvaluator(DatasetEvaluator):
def __init__(self, dataset_name, cfg, distributed, output_dir=None):
self._distributed = distributed
self._output_dir = output_dir
self._cpu_device = torch.device("cpu")
self._logger = logging.getLogger(__name__)
self._metadata = MetadataCatalog.get(dataset_name)
json_file = PathManager.get_local_path(self._metadata.json_file)
self._oid_api = LVIS(json_file)
# Test set json files do not contain annotations (evaluation must be
# performed using the LVIS evaluation server).
self._do_evaluation = len(self._oid_api.get_ann_ids()) > 0
self._mask_on = cfg.MODEL.MASK_ON
def reset(self):
self._predictions = []
self._oid_results = []
def process(self, inputs, outputs):
for input, output in zip(inputs, outputs):
prediction = {"image_id": input["image_id"]}
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = instances_to_coco_json(
instances, input["image_id"])
self._predictions.append(prediction)
def evaluate(self):
if self._distributed:
comm.synchronize()
self._predictions = comm.gather(self._predictions, dst=0)
self._predictions = list(itertools.chain(*self._predictions))
if not comm.is_main_process():
return
if len(self._predictions) == 0:
self._logger.warning("[LVISEvaluator] Did not receive valid predictions.")
return {}
self._logger.info("Preparing results in the OID format ...")
self._oid_results = list(
itertools.chain(*[x["instances"] for x in self._predictions]))
# unmap the category ids for LVIS (from 0-indexed to 1-indexed)
for result in self._oid_results:
result["category_id"] += 1
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(
self._output_dir, "oid_instances_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(self._oid_results))
f.flush()
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info("Evaluating predictions ...")
self._results = OrderedDict()
res, mAP = _evaluate_predictions_on_oid(
self._oid_api,
file_path,
eval_seg=self._mask_on,
class_names=self._metadata.get("thing_classes"),
)
self._results['bbox'] = res
mAP_out_path = os.path.join(self._output_dir, "oid_mAP.npy")
self._logger.info('Saving mAP to' + mAP_out_path)
np.save(mAP_out_path, mAP)
return copy.deepcopy(self._results)
def _evaluate_predictions_on_oid(
oid_gt, oid_results_path, eval_seg=False,
class_names=None):
logger = logging.getLogger(__name__)
metrics = ["AP50", "AP50_expand"]
results = {}
oid_eval = OIDEval(oid_gt, oid_results_path, 'bbox', expand_pred_label=False)
oid_eval.run()
oid_eval.print_results()
results["AP50"] = oid_eval.get_results()["AP50"]
if eval_seg:
oid_eval = OIDEval(oid_gt, oid_results_path, 'segm', expand_pred_label=False)
oid_eval.run()
oid_eval.print_results()
results["AP50_segm"] = oid_eval.get_results()["AP50"]
else:
oid_eval = OIDEval(oid_gt, oid_results_path, 'bbox', expand_pred_label=True)
oid_eval.run()
oid_eval.print_results()
results["AP50_expand"] = oid_eval.get_results()["AP50"]
mAP = np.zeros(len(class_names)) - 1
precisions = oid_eval.eval['precision']
assert len(class_names) == precisions.shape[2]
results_per_category = []
id2apiid = sorted(oid_gt.get_cat_ids())
inst_aware_ap, inst_count = 0, 0
for idx, name in enumerate(class_names):
precision = precisions[:, :, idx, 0]
precision = precision[precision > -1]
ap = np.mean(precision) if precision.size else float("nan")
inst_num = len(oid_gt.get_ann_ids(cat_ids=[id2apiid[idx]]))
if inst_num > 0:
results_per_category.append(("{} {}".format(
name.replace(' ', '_'),
inst_num if inst_num < 1000 else '{:.1f}k'.format(inst_num / 1000)),
float(ap * 100)))
inst_aware_ap += inst_num * ap
inst_count += inst_num
mAP[idx] = ap
# logger.info("{} {} {:.2f}".format(name, inst_num, ap * 100))
inst_aware_ap = inst_aware_ap * 100 / inst_count
N_COLS = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)])
table = tabulate(
results_2d,
tablefmt="pipe",
floatfmt=".3f",
headers=["category", "AP"] * (N_COLS // 2),
numalign="left",
)
logger.info("Per-category {} AP: \n".format('bbox') + table)
logger.info("Instance-aware {} AP: {:.4f}".format('bbox', inst_aware_ap))
logger.info("Evaluation results for bbox: \n" + \
create_small_table(results))
return results, mAP