GPEN / sr_model /real_esrnet.py
AK391
files
2782137
raw
history blame
2.18 kB
import os
import torch
import numpy as np
from rrdbnet_arch import RRDBNet
from torch.nn import functional as F
class RealESRNet(object):
def __init__(self, base_dir='./', model=None, scale=2, device='cuda'):
self.base_dir = base_dir
self.scale = scale
self.device = device
self.load_srmodel(base_dir, model)
def load_srmodel(self, base_dir, model):
self.srmodel = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=32, num_block=23, num_grow_ch=32, scale=self.scale)
if model is None:
loadnet = torch.load(os.path.join(self.base_dir, 'weights', 'rrdb_realesrnet_psnr.pth'))
else:
loadnet = torch.load(os.path.join(self.base_dir, 'weights', model+'.pth'))
#print(loadnet['params_ema'].keys)
self.srmodel.load_state_dict(loadnet['params_ema'], strict=True)
self.srmodel.eval()
self.srmodel = self.srmodel.to(self.device)
def process(self, img):
img = img.astype(np.float32) / 255.
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
img = img.unsqueeze(0).to(self.device)
if self.scale == 2:
mod_scale = 2
elif self.scale == 1:
mod_scale = 4
else:
mod_scale = None
if mod_scale is not None:
h_pad, w_pad = 0, 0
_, _, h, w = img.size()
if (h % mod_scale != 0):
h_pad = (mod_scale - h % mod_scale)
if (w % mod_scale != 0):
w_pad = (mod_scale - w % mod_scale)
img = F.pad(img, (0, w_pad, 0, h_pad), 'reflect')
try:
with torch.no_grad():
output = self.srmodel(img)
# remove extra pad
if mod_scale is not None:
_, _, h, w = output.size()
output = output[:, :, 0:h - h_pad, 0:w - w_pad]
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
output = (output * 255.0).round().astype(np.uint8)
return output
except:
return None