Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import spaces | |
from diffusers import FluxPipeline | |
from safetensors.torch import load_file | |
# Load the model | |
pipe = FluxPipeline.from_pretrained( | |
'black-forest-labs/FLUX.1-dev', | |
torch_dtype=torch.bfloat16, | |
use_safetensors=True | |
).to('cuda') | |
# Load SRPO weights | |
from huggingface_hub import hf_hub_download | |
srpo_path = hf_hub_download( | |
repo_id="tencent/SRPO", | |
filename="diffusion_pytorch_model.safetensors" | |
) | |
state_dict = load_file(srpo_path) | |
pipe.transformer.load_state_dict(state_dict) | |
def generate_image( | |
prompt, | |
width=1024, | |
height=1024, | |
guidance_scale=3.5, | |
num_inference_steps=50, | |
seed=-1 | |
): | |
if seed == -1: | |
seed = torch.randint(0, 2**32, (1,)).item() | |
generator = torch.Generator(device='cuda').manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
max_sequence_length=512, | |
generator=generator | |
).images[0] | |
return image, seed | |
with gr.Blocks(title="FLUX SRPO Text-to-Image", theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray", neutral_hue="slate")) as demo: | |
gr.Markdown("# Flux SRPO") | |
gr.Markdown("Generate images using FLUX model enhanced with Tencent's SRPO technique") | |
gr.Markdown("Built with [AnyCoder](https://huggingface.co/spaces/akhaliq/anycoder)") | |
output_image = gr.Image(label="Generated Image", type="pil") | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Describe the image you want to generate...", | |
lines=3 | |
) | |
generate_btn = gr.Button("Generate Image", variant="primary", size="lg") | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
width = gr.Slider( | |
minimum=256, | |
maximum=2048, | |
value=1024, | |
step=64, | |
label="Width" | |
) | |
height = gr.Slider( | |
minimum=256, | |
maximum=2048, | |
value=1024, | |
step=64, | |
label="Height" | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
minimum=1.0, | |
maximum=20.0, | |
value=3.5, | |
step=0.5, | |
label="Guidance Scale" | |
) | |
num_inference_steps = gr.Slider( | |
minimum=10, | |
maximum=100, | |
value=50, | |
step=5, | |
label="Inference Steps" | |
) | |
seed = gr.Number( | |
label="Seed (-1 for random)", | |
value=-1, | |
precision=0 | |
) | |
used_seed = gr.Number(label="Seed Used", precision=0) | |
gr.Examples( | |
examples=[ | |
["The Death of Ophelia by John Everett Millais, Pre-Raphaelite painting, Ophelia floating in a river surrounded by flowers, detailed natural elements, melancholic and tragic atmosphere"], | |
["A serene Japanese garden with cherry blossoms, koi pond, traditional wooden bridge, soft morning light, photorealistic"], | |
["Cyberpunk cityscape at night, neon lights, flying cars, rain-slicked streets, blade runner aesthetic, highly detailed"], | |
["Portrait of a majestic lion in golden hour light, detailed fur texture, intense gaze, African savanna background"], | |
["Abstract colorful explosion of paint in water, high speed photography, vibrant colors mixing, dramatic lighting"], | |
], | |
inputs=prompt, | |
label="Example Prompts" | |
) | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[prompt, width, height, guidance_scale, num_inference_steps, seed], | |
outputs=[output_image, used_seed] | |
) | |
demo.launch() |