Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import gradio as gr | |
from typing import List, Dict | |
import random | |
import time | |
from utils import get_app | |
# Import all the model registries (keeping existing imports) | |
import anthropic_gradio | |
import cerebras_gradio | |
import dashscope_gradio | |
import fireworks_gradio | |
import gemini_gradio | |
import groq_gradio | |
import hyperbolic_gradio | |
import mistral_gradio | |
import nvidia_gradio | |
import openai_gradio | |
import perplexity_gradio | |
import sambanova_gradio | |
import together_gradio | |
import xai_gradio | |
# Define MODEL_REGISTRIES dictionary | |
MODEL_REGISTRIES = { | |
"OpenAI": (openai_gradio.registry, os.getenv("OPENAI_API_KEY")), | |
"Anthropic": (anthropic_gradio.registry, os.getenv("ANTHROPIC_API_KEY")), | |
"Cerebras": (cerebras_gradio, os.getenv("CEREBRAS_API_KEY")), | |
"DashScope": (dashscope_gradio, os.getenv("DASHSCOPE_API_KEY")), | |
"Fireworks": (fireworks_gradio, os.getenv("FIREWORKS_API_KEY")), | |
"Gemini": (gemini_gradio, os.getenv("GEMINI_API_KEY")), | |
"Groq": (groq_gradio, os.getenv("GROQ_API_KEY")), | |
"Hyperbolic": (hyperbolic_gradio, os.getenv("HYPERBOLIC_API_KEY")), | |
"Mistral": (mistral_gradio, os.getenv("MISTRAL_API_KEY")), | |
"NVIDIA": (nvidia_gradio, os.getenv("NVIDIA_API_KEY")), | |
"SambaNova": (sambanova_gradio, os.getenv("SAMBANOVA_API_KEY")), | |
"Together": (together_gradio, os.getenv("TOGETHER_API_KEY")), | |
"XAI": (xai_gradio, os.getenv("XAI_API_KEY")), | |
} | |
def get_all_models(): | |
"""Get all available models from the registries.""" | |
return [ | |
"OpenAI: gpt-4o", # From app_openai.py | |
"Anthropic: claude-3-5-sonnet-20241022", # From app_claude.py | |
] | |
def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str: | |
"""Generate a prompt for models to discuss and build upon previous responses.""" | |
prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}" | |
Previous responses from other AI models: | |
{chr(10).join(f"- {response}" for response in previous_responses)} | |
Please provide your perspective while: | |
1. Acknowledging key insights from previous responses | |
2. Adding any missing important points | |
3. Respectfully noting if you disagree with anything and explaining why | |
4. Building towards a complete answer | |
Keep your response focused and concise (max 3-4 paragraphs).""" | |
return prompt | |
def generate_consensus_prompt(original_question: str, discussion_history: List[str]) -> str: | |
"""Generate a prompt for final consensus building.""" | |
return f"""Review this multi-AI discussion about: "{original_question}" | |
Discussion history: | |
{chr(10).join(discussion_history)} | |
As a final synthesizer, please: | |
1. Identify the key points where all models agreed | |
2. Explain how any disagreements were resolved | |
3. Present a clear, unified answer that represents our collective best understanding | |
4. Note any remaining uncertainties or caveats | |
Keep the final consensus concise but complete.""" | |
def chat_with_openai(model: str, messages: List[Dict], api_key: str) -> str: | |
import openai | |
client = openai.OpenAI(api_key=api_key) | |
response = client.chat.completions.create( | |
model=model, | |
messages=messages | |
) | |
return response.choices[0].message.content | |
def chat_with_anthropic(model: str, messages: List[Dict], api_key: str) -> str: | |
from anthropic import Anthropic | |
client = Anthropic(api_key=api_key) | |
# Convert messages to Anthropic format | |
prompt = "\n\n".join([f"{m['role']}: {m['content']}" for m in messages]) | |
response = client.messages.create( | |
model=model, | |
messages=[{"role": "user", "content": prompt}] | |
) | |
return response.content[0].text | |
def multi_model_consensus( | |
question: str, | |
selected_models: List[str], | |
rounds: int = 3, | |
progress: gr.Progress = gr.Progress() | |
) -> tuple[str, List[Dict]]: | |
if not selected_models: | |
return "Please select at least one model to chat with.", [] | |
chat_history = [] | |
discussion_history = [] | |
# Initial responses | |
progress(0, desc="Getting initial responses...") | |
initial_responses = [] | |
for i, model in enumerate(selected_models): | |
provider, model_name = model.split(": ", 1) | |
registry_fn, api_key = MODEL_REGISTRIES[provider] | |
if not api_key: | |
continue | |
try: | |
# Load the model using the registry function | |
predictor = gr.load( | |
name=model_name, | |
src=registry_fn, | |
token=api_key | |
) | |
# Format the request based on the provider | |
if provider == "Anthropic": | |
response = predictor.predict( | |
messages=[{"role": "user", "content": question}], | |
max_tokens=1024, | |
model=model_name, | |
api_name="chat" | |
) | |
else: | |
response = predictor.predict( | |
question, | |
api_name="chat" | |
) | |
initial_responses.append(f"{model}: {response}") | |
discussion_history.append(f"Initial response from {model}:\n{response}") | |
chat_history.append((f"Initial response from {model}", response)) | |
except Exception as e: | |
chat_history.append((f"Error from {model}", str(e))) | |
# Discussion rounds | |
for round_num in range(rounds): | |
progress((round_num + 1) / (rounds + 2), desc=f"Discussion round {round_num + 1}...") | |
round_responses = [] | |
random.shuffle(selected_models) # Randomize order each round | |
for model in selected_models: | |
provider, model_name = model.split(": ", 1) | |
registry, api_key = MODEL_REGISTRIES[provider] | |
if not api_key: | |
continue | |
try: | |
discussion_prompt = generate_discussion_prompt(question, discussion_history) | |
response = registry.chat( | |
model=model_name, | |
messages=[{"role": "user", "content": discussion_prompt}], | |
api_key=api_key | |
) | |
round_responses.append(f"{model}: {response}") | |
discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}") | |
chat_history.append((f"Round {round_num + 1} - {model}", response)) | |
except Exception as e: | |
chat_history.append((f"Error from {model} in round {round_num + 1}", str(e))) | |
# Final consensus - use the model that's shown most consistency | |
progress(0.9, desc="Building final consensus...") | |
# Use the first model for final consensus instead of two models | |
model = selected_models[0] | |
provider, model_name = model.split(": ", 1) | |
registry, api_key = MODEL_REGISTRIES[provider] | |
try: | |
consensus_prompt = generate_consensus_prompt(question, discussion_history) | |
final_consensus = registry.chat( | |
model=model_name, | |
messages=[{"role": "user", "content": consensus_prompt}], | |
api_key=api_key | |
) | |
except Exception as e: | |
final_consensus = f"Error getting consensus from {model}: {str(e)}" | |
chat_history.append(("Final Consensus", final_consensus)) | |
progress(1.0, desc="Done!") | |
return chat_history | |
with gr.Blocks() as demo: | |
gr.Markdown("# Experimental Multi-Model Consensus Chat") | |
gr.Markdown("""Select multiple models to collaborate on answering your question. | |
The models will discuss with each other and attempt to reach a consensus. | |
Maximum 5 models can be selected at once.""") | |
with gr.Row(): | |
with gr.Column(): | |
model_selector = gr.Dropdown( | |
choices=get_all_models(), | |
multiselect=True, | |
label="Select Models (max 5)", | |
info="Choose up to 5 models to participate in the discussion", | |
value=["OpenAI: gpt-4o", "Anthropic: claude-3-5-sonnet-20241022"], # Updated model names | |
max_choices=5 | |
) | |
rounds_slider = gr.Slider( | |
minimum=1, | |
maximum=5, | |
value=3, | |
step=1, | |
label="Discussion Rounds", | |
info="Number of rounds of discussion between models" | |
) | |
chatbot = gr.Chatbot(height=600, label="Multi-Model Discussion") | |
msg = gr.Textbox(label="Your Question", placeholder="Ask a question for the models to discuss...") | |
def respond(message, selected_models, rounds): | |
chat_history = multi_model_consensus(message, selected_models, rounds) | |
return chat_history | |
msg.submit( | |
respond, | |
[msg, model_selector, rounds_slider], | |
[chatbot], | |
api_name="consensus_chat" | |
) | |
if __name__ == "__main__": | |
demo.launch() |