Spaces:
Running on CPU Upgrade

anychat / app_experimental.py
akhaliq's picture
akhaliq HF staff
add experimental tab
12afc5d
raw
history blame
12.5 kB
import os
import gradio as gr
from typing import List, Dict, Callable
import random
import google.generativeai as genai
from anthropic import Anthropic
import openai
from openai import OpenAI # Add explicit OpenAI import
def get_all_models():
"""Get all available models from the registries."""
return [
"SambaNova: Meta-Llama-3.2-1B-Instruct",
"SambaNova: Meta-Llama-3.2-3B-Instruct",
"SambaNova: Llama-3.2-11B-Vision-Instruct",
"SambaNova: Llama-3.2-90B-Vision-Instruct",
"SambaNova: Meta-Llama-3.1-8B-Instruct",
"SambaNova: Meta-Llama-3.1-70B-Instruct",
"SambaNova: Meta-Llama-3.1-405B-Instruct",
"Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct",
"Hyperbolic: meta-llama/Llama-3.2-3B-Instruct",
"Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct",
"Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct",
"Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct",
"Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B",
"Hyperbolic: Qwen/Qwen2.5-72B-Instruct",
"Hyperbolic: deepseek-ai/DeepSeek-V2.5",
"Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct",
]
def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str:
"""Generate a prompt for models to discuss and build upon previous responses."""
prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}"
Previous responses from other AI models:
{chr(10).join(f"- {response}" for response in previous_responses)}
Please provide your perspective while:
1. Acknowledging key insights from previous responses
2. Adding any missing important points
3. Respectfully noting if you disagree with anything and explaining why
4. Building towards a complete answer
Keep your response focused and concise (max 3-4 paragraphs)."""
return prompt
def generate_consensus_prompt(original_question: str, discussion_history: List[str]) -> str:
"""Generate a prompt for final consensus building."""
return f"""Review this multi-AI discussion about: "{original_question}"
Discussion history:
{chr(10).join(discussion_history)}
As a final synthesizer, please:
1. Identify the key points where all models agreed
2. Explain how any disagreements were resolved
3. Present a clear, unified answer that represents our collective best understanding
4. Note any remaining uncertainties or caveats
Keep the final consensus concise but complete."""
def chat_with_openai(model: str, messages: List[Dict], api_key: str) -> str:
import openai
client = openai.OpenAI(api_key=api_key)
response = client.chat.completions.create(
model=model,
messages=messages
)
return response.choices[0].message.content
def chat_with_anthropic(messages: List[Dict], api_key: str) -> str:
"""Chat with Anthropic's Claude model."""
client = Anthropic(api_key=api_key)
response = client.messages.create(
model="claude-3-sonnet-20240229",
messages=messages,
max_tokens=1024
)
return response.content[0].text
def chat_with_gemini(messages: List[Dict], api_key: str) -> str:
"""Chat with Gemini Pro model."""
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-pro')
# Convert messages to Gemini format
gemini_messages = []
for msg in messages:
role = "user" if msg["role"] == "user" else "model"
gemini_messages.append({"role": role, "parts": [msg["content"]]})
response = model.generate_content([m["parts"][0] for m in gemini_messages])
return response.text
def chat_with_sambanova(messages: List[Dict], api_key: str, model_name: str = "Llama-3.2-90B-Vision-Instruct") -> str:
"""Chat with SambaNova's models using their OpenAI-compatible API."""
client = openai.OpenAI(
api_key=api_key,
base_url="https://api.sambanova.ai/v1",
)
response = client.chat.completions.create(
model=model_name, # Use the specific model name passed in
messages=messages,
temperature=0.1,
top_p=0.1
)
return response.choices[0].message.content
def chat_with_hyperbolic(messages: List[Dict], api_key: str, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct") -> str:
"""Chat with Hyperbolic's models using their OpenAI-compatible API."""
client = OpenAI(
api_key=api_key,
base_url="https://api.hyperbolic.xyz/v1"
)
# Add system message to the start of the messages list
full_messages = [
{"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."},
*messages
]
response = client.chat.completions.create(
model=model_name, # Use the specific model name passed in
messages=full_messages,
temperature=0.7,
max_tokens=1024,
)
return response.choices[0].message.content
def multi_model_consensus(
question: str,
selected_models: List[str],
rounds: int = 3,
progress: gr.Progress = gr.Progress()
) -> tuple[str, List[Dict]]:
if not selected_models:
return "Please select at least one model to chat with.", []
chat_history = []
discussion_history = []
# Initial responses
progress(0, desc="Getting initial responses...")
initial_responses = []
for i, model in enumerate(selected_models):
provider, model_name = model.split(": ", 1)
try:
if provider == "Anthropic":
api_key = os.getenv("ANTHROPIC_API_KEY")
response = chat_with_anthropic(
messages=[{"role": "user", "content": question}],
api_key=api_key
)
elif provider == "SambaNova":
api_key = os.getenv("SAMBANOVA_API_KEY")
response = chat_with_sambanova(
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": question}
],
api_key=api_key
)
elif provider == "Hyperbolic": # Add Hyperbolic case
api_key = os.getenv("HYPERBOLIC_API_KEY")
response = chat_with_hyperbolic(
messages=[{"role": "user", "content": question}],
api_key=api_key
)
else: # Gemini
api_key = os.getenv("GEMINI_API_KEY")
response = chat_with_gemini(
messages=[{"role": "user", "content": question}],
api_key=api_key
)
initial_responses.append(f"{model}: {response}")
discussion_history.append(f"Initial response from {model}:\n{response}")
chat_history.append((f"Initial response from {model}", response))
except Exception as e:
chat_history.append((f"Error from {model}", str(e)))
# Discussion rounds
for round_num in range(rounds):
progress((round_num + 1) / (rounds + 2), desc=f"Discussion round {round_num + 1}...")
round_responses = []
random.shuffle(selected_models) # Randomize order each round
for model in selected_models:
provider, model_name = model.split(": ", 1)
try:
discussion_prompt = generate_discussion_prompt(question, discussion_history)
if provider == "Anthropic":
api_key = os.getenv("ANTHROPIC_API_KEY")
response = chat_with_anthropic(
messages=[{"role": "user", "content": discussion_prompt}],
api_key=api_key
)
elif provider == "SambaNova":
api_key = os.getenv("SAMBANOVA_API_KEY")
response = chat_with_sambanova(
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": discussion_prompt}
],
api_key=api_key
)
elif provider == "Hyperbolic": # Add Hyperbolic case
api_key = os.getenv("HYPERBOLIC_API_KEY")
response = chat_with_hyperbolic(
messages=[{"role": "user", "content": discussion_prompt}],
api_key=api_key
)
else: # Gemini
api_key = os.getenv("GEMINI_API_KEY")
response = chat_with_gemini(
messages=[{"role": "user", "content": discussion_prompt}],
api_key=api_key
)
round_responses.append(f"{model}: {response}")
discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}")
chat_history.append((f"Round {round_num + 1} - {model}", response))
except Exception as e:
chat_history.append((f"Error from {model} in round {round_num + 1}", str(e)))
# Final consensus
progress(0.9, desc="Building final consensus...")
model = selected_models[0]
provider, model_name = model.split(": ", 1)
try:
consensus_prompt = generate_consensus_prompt(question, discussion_history)
if provider == "Anthropic":
api_key = os.getenv("ANTHROPIC_API_KEY")
final_consensus = chat_with_anthropic(
messages=[{"role": "user", "content": consensus_prompt}],
api_key=api_key
)
elif provider == "SambaNova":
api_key = os.getenv("SAMBANOVA_API_KEY")
final_consensus = chat_with_sambanova(
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": consensus_prompt}
],
api_key=api_key
)
elif provider == "Hyperbolic": # Add Hyperbolic case
api_key = os.getenv("HYPERBOLIC_API_KEY")
final_consensus = chat_with_hyperbolic(
messages=[{"role": "user", "content": consensus_prompt}],
api_key=api_key
)
else: # Gemini
api_key = os.getenv("GEMINI_API_KEY")
final_consensus = chat_with_gemini(
messages=[{"role": "user", "content": consensus_prompt}],
api_key=api_key
)
except Exception as e:
final_consensus = f"Error getting consensus from {model}: {str(e)}"
chat_history.append(("Final Consensus", final_consensus))
progress(1.0, desc="Done!")
return chat_history
with gr.Blocks() as demo:
gr.Markdown("# Experimental Multi-Model Consensus Chat")
gr.Markdown("""Select multiple models to collaborate on answering your question.
The models will discuss with each other and attempt to reach a consensus.
Maximum 3 models can be selected at once.""")
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(
choices=get_all_models(),
multiselect=True,
label="Select Models (max 3)",
info="Choose up to 3 models to participate in the discussion",
value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"],
max_choices=3
)
rounds_slider = gr.Slider(
minimum=1,
maximum=2,
value=1,
step=1,
label="Discussion Rounds",
info="Number of rounds of discussion between models"
)
chatbot = gr.Chatbot(height=600, label="Multi-Model Discussion")
msg = gr.Textbox(label="Your Question", placeholder="Ask a question for the models to discuss...")
def respond(message, selected_models, rounds):
chat_history = multi_model_consensus(message, selected_models, rounds)
return chat_history
msg.submit(
respond,
[msg, model_selector, rounds_slider],
[chatbot],
api_name="consensus_chat"
)
if __name__ == "__main__":
demo.launch()