from gradio_client import Client import gradio as gr MODELS = { "SmolVLM-Instruct": "akhaliq/SmolVLM-Instruct" } def create_chat_fn(client): def chat(message, history): response = client.predict( message={"text": message, "files": []}, system_prompt="You are a helpful AI assistant.", temperature=0.7, max_new_tokens=1024, top_k=40, repetition_penalty=1.1, top_p=0.95, api_name="/chat" ) return response return chat def set_client_for_session(model_name, request: gr.Request): headers = {} if request and hasattr(request, 'request') and hasattr(request.request, 'headers'): x_ip_token = request.request.headers.get('x-ip-token') if x_ip_token: headers["X-IP-Token"] = x_ip_token return Client(MODELS[model_name], headers=headers) def safe_chat_fn(message, history, client): if client is None: return "Error: Client not initialized. Please refresh the page." return create_chat_fn(client)(message, history) with gr.Blocks() as demo: client = gr.State() model_dropdown = gr.Dropdown( choices=list(MODELS.keys()), value="SmolVLM-Instruct", label="Select Model", interactive=True ) chat_interface = gr.ChatInterface( fn=safe_chat_fn, additional_inputs=[client], multimodal=True ) # Update client when model changes def update_model(model_name, request): return set_client_for_session(model_name, request) model_dropdown.change( fn=update_model, inputs=[model_dropdown], outputs=[client], ) # Initialize client on page load demo.load( fn=set_client_for_session, inputs=gr.State("SmolVLM-Instruct"), outputs=client, ) demo = demo demo.launch()