import os os.system("pip install gradio==2.4.6") import gradio as gr title = "fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit" description = "Gradio Demo for fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit | Github Repo
" examples = [ ["Hello this is a test run","fastspeech2-en-200_speaker-cv4"], ["Hello, this is a test run.","tts_transformer-en-200_speaker-cv4"], ] io1 = gr.Interface.load("huggingface/facebook/fastspeech2-en-200_speaker-cv4") io2 = gr.Interface.load("huggingface/facebook/tts_transformer-en-200_speaker-cv4") io3 = gr.Interface.load("huggingface/facebook/tts_transformer-fr-cv7_css10") io4 = gr.Interface.load("huggingface/facebook/tts_transformer-ru-cv7_css10") io5 = gr.Interface.load("huggingface/facebook/tts_transformer-tr-cv7") def inference(text,model): if model == "fastspeech2-en-200_speaker-cv4": outtext = io1(text) elif model == "tts_transformer-en-200_speaker-cv4": outtext = io2(text) elif model == "tts_transformer-fr-cv7_css10": outtext = io3(text) elif model == "tts_transformer-ru-cv7_css10": outtext = io4(text) else: outtext = io5(text) return outtext gr.Interface( inference, [gr.inputs.Textbox(label="Input",lines=5),gr.inputs.Dropdown(choices=["fastspeech2-en-200_speaker-cv4","tts_transformer-en-200_speaker-cv4","tts_transformer-zh-cv7_css10","tts_transformer-fr-cv7_css10","tts_transformer-ru-cv7_css10"], type="value", default="fastspeech2-en-200_speaker-cv4", label="model") ], gr.outputs.Audio(label="Output"), examples=examples, article=article, title=title, description=description, enable_queue=True).launch()