Spaces:
Runtime error
Runtime error
File size: 2,061 Bytes
eadf256 8aee673 eadf256 497c126 0bb1032 87e80da eadf256 9f8e809 eadf256 b1a7044 eadf256 da5d467 87e80da b1a7044 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image
from eval import interpolator, util
import tensorflow as tf
import gradio as gr
from huggingface_hub import snapshot_download
from PIL import PngImagePlugin
LARGE_ENOUGH_NUMBER = 100
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)
os.system("wget https://raw.githubusercontent.com/google-research/frame-interpolation/main/photos/one.png")
os.system("wget https://raw.githubusercontent.com/google-research/frame-interpolation/main/photos/two.png")
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
interpolator = interpolator.Interpolator(model, None)
def predict(frame1, frame2, times_to_interpolate):
input_frames = [str(frame1), str(frame2)]
frames = list(
util.interpolate_recursively_from_files(
input_frames, times_to_interpolate, interpolator))
ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)
out_path = "out.mp4"
mediapy.write_video(str(out_path), frames, fps=30)
return out_path
title="frame-interpolation"
description="Gradio demo for FILM: Frame Interpolation for Large Scene Motion. To use it, simply upload your images and add the times to interpolate number or click on one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2202.04901' target='_blank'>FILM: Frame Interpolation for Large Motion</a> | <a href='https://github.com/google-research/frame-interpolation' target='_blank'>Github Repo</a></p>"
examples=[['one.png','two.png',2]]
gr.Interface(predict,[gr.inputs.Image(type='filepath',shape=(512,512)),gr.inputs.Image(type='filepath',shape=(512,512)),gr.inputs.Slider(minimum=2,maximum=5,step=1)],"playable_video",title=title,description=description,article=article,examples=examples).launch(enable_queue=True) |