File size: 2,056 Bytes
eadf256
8aee673
 
 
eadf256
 
 
 
 
 
 
 
 
497c126
0bb1032
 
 
 
 
87e80da
 
eadf256
 
 
 
9f8e809
eadf256
b1a7044
eadf256
 
 
 
 
 
 
 
 
 
 
 
da5d467
 
d24fd05
87e80da
b1a7044
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image
from eval import interpolator, util
import tensorflow as tf
import gradio as gr

from huggingface_hub import snapshot_download

from PIL import PngImagePlugin
LARGE_ENOUGH_NUMBER = 100
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)


os.system("wget https://raw.githubusercontent.com/google-research/frame-interpolation/main/photos/one.png")
os.system("wget https://raw.githubusercontent.com/google-research/frame-interpolation/main/photos/two.png")
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")

interpolator = interpolator.Interpolator(model, None)

    
def predict(frame1, frame2, times_to_interpolate):
   

    input_frames = [str(frame1), str(frame2)]

    frames = list(
        util.interpolate_recursively_from_files(
            input_frames, times_to_interpolate, interpolator))
    ffmpeg_path = util.get_ffmpeg_path()
    mediapy.set_ffmpeg(ffmpeg_path)
    out_path =  "out.mp4"
    mediapy.write_video(str(out_path), frames, fps=30)
    return out_path

title="frame-interpolation"
description="Gradio demo for FILM: Frame Interpolation for Large Scene Motion. To use it, simply upload your images and add the times to interpolate number or click on one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://film-net.github.io/' target='_blank'>FILM: Frame Interpolation for Large Motion</a> | <a href='https://github.com/google-research/frame-interpolation' target='_blank'>Github Repo</a></p>"
examples=[['one.png','two.png',2]]
gr.Interface(predict,[gr.inputs.Image(type='filepath',shape=(512,512)),gr.inputs.Image(type='filepath',shape=(512,512)),gr.inputs.Slider(minimum=2,maximum=5,step=1)],"playable_video",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)