import os os.system("git clone https://github.com/google-research/frame-interpolation") import sys sys.path.append("frame-interpolation") import numpy as np import tensorflow as tf import mediapy from PIL import Image from eval import interpolator, util import tensorflow as tf import gradio as gr from huggingface_hub import snapshot_download from PIL import PngImagePlugin LARGE_ENOUGH_NUMBER = 100 PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2) model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style") interpolator = interpolator.Interpolator(model, None) def resize(width,img): basewidth = width img = Image.open(img) wpercent = (basewidth/float(img.size[0])) hsize = int((float(img.size[1])*float(wpercent))) img = img.resize((basewidth,hsize), Image.ANTIALIAS) return img def predict(frame1, frame2, times_to_interpolate): frame1 = resize(512,frame1) frame2 = resize(512,frame2) frame1.save("test1.png") frame2.save("test2.png") input_frames = ["test1.png", "test2.png"] frames = list( util.interpolate_recursively_from_files( input_frames, times_to_interpolate, interpolator)) ffmpeg_path = util.get_ffmpeg_path() mediapy.set_ffmpeg(ffmpeg_path) out_path = "out.mp4" mediapy.write_video(str(out_path), frames, fps=30) return out_path title="frame-interpolation" description="Gradio demo for FILM: Frame Interpolation for Large Scene Motion. To use it, simply upload your images and add the times to interpolate number or click on one of the examples to load them. Read more at the links below." article = "

FILM: Frame Interpolation for Large Motion | Github Repo

" examples=[['cat3.jpeg','cat4.jpeg',2]] gr.Interface(predict,[gr.inputs.Image(type='filepath'),gr.inputs.Image(type='filepath'),gr.inputs.Slider(minimum=2,maximum=5,step=1)],"playable_video",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)