import os os.system("git clone https://github.com/google-research/frame-interpolation") import sys sys.path.append("frame-interpolation") import numpy as np import tensorflow as tf import mediapy from PIL import Image from eval import interpolator, util import tensorflow as tf import gradio as gr _UINT8_MAX_F = float(np.iinfo(np.uint8).max) from huggingface_hub import snapshot_download model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style") interpolator = interpolator.Interpolator(model, None) batch_dt = np.full(shape=(1,), fill_value=0.5, dtype=np.float32) def predict(frame1, frame2, times_to_interpolate): img1 = frame1 img2 = frame2 if not img1.size == img2.size: img1 = img1.crop((0, 0, min(img1.size[0], img2.size[0]), min(img1.size[1], img2.size[1]))) img2 = img2.crop((0, 0, min(img1.size[0], img2.size[0]), min(img1.size[1], img2.size[1]))) frame1 = 'new_frame1.png' frame2 = 'new_frame2.png' img1.save(frame1) img2.save(frame2) input_frames = [str(frame1), str(frame2)] frames = list( util.interpolate_recursively_from_files( input_frames, times_to_interpolate, interpolator)) ffmpeg_path = util.get_ffmpeg_path() mediapy.set_ffmpeg(ffmpeg_path) out_path = "out.mp4" mediapy.write_video(str(out_path), frames, fps=30) return out_path gr.Interface(predict,[gr.inputs.Image(type='pil'),gr.inputs.Image(type='pil'),gr.inputs.Slider(minimum=2,maximum=5,step=1)],"playable_video").launch(enable_queue=True)