Spaces:
Running
Running
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor, MllamaForConditionalGeneration | |
import streamlit as st | |
import os | |
from PIL import Image | |
import requests | |
import torch | |
from torchvision import io | |
from typing import Dict | |
import base64 | |
import random | |
def init_model(): | |
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True) | |
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) | |
model = model.eval() | |
return model, tokenizer | |
def init_gpu_model(): | |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id) | |
model = model.eval().cuda() | |
return model, tokenizer | |
def init_qwen_model(): | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
return model, processor | |
def get_quen_op(image_file, model, processor): | |
try: | |
image = Image.open(image_file).convert('RGB') | |
conversation = [ | |
{ | |
"role":"user", | |
"content":[ | |
{ | |
"type":"image", | |
}, | |
{ | |
"type":"text", | |
"text":"Extract text from this image." | |
} | |
] | |
} | |
] | |
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) | |
inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt") | |
inputs = {k: v.to(torch.float32) if torch.is_floating_point(v) else v for k, v in inputs.items()} | |
generation_config = { | |
"max_new_tokens": 32, | |
"do_sample": False, | |
"top_k": 20, | |
"top_p": 0.90, | |
"temperature": 0.4, | |
"num_return_sequences": 1, | |
"pad_token_id": processor.tokenizer.pad_token_id, | |
"eos_token_id": processor.tokenizer.eos_token_id, | |
} | |
output_ids = model.generate(**inputs, **generation_config) | |
if 'input_ids' in inputs: | |
generated_ids = output_ids[:, inputs['input_ids'].shape[1]:] | |
else: | |
generated_ids = output_ids | |
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
return output_text[:] if output_text else "No text extracted from the image." | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
def init_llama(): | |
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct" | |
model = MllamaForConditionalGeneration.from_pretrained( | |
model_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
token=os.getenv("access_token") | |
) | |
processor = AutoProcessor.from_pretrained(model_id, token=os.getenv("access_token")) | |
return model, processor | |
def get_llama_op(image_file, model, processor): | |
with open(image_file, "rb") as f: | |
image = base64.b64encode(f.read()).decode('utf-8') | |
image = Image.open(image_file) | |
messages = [ | |
{"role": "user", "content": [ | |
{"type": "image"}, | |
{"type": "text", "text": "You are an accurate OCR engine. From the given image, extract the text."} | |
]} | |
] | |
input_text = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(images=image, text=input_text, return_tensors="pt").to(model.device) | |
output = model.generate(**inputs, max_new_tokens=128) | |
return processor.decode(output[0]) | |
def get_text(image_file, model, tokenizer): | |
res = model.chat(tokenizer, image_file, ocr_type='ocr') | |
return res | |
st.title("Image - Text OCR") | |
st.write("Upload an image for OCR") | |
# MODEL, PROCESSOR = init_llama() | |
random_value = random.randint(0, 100) | |
st.write(f"Model loaded: build number - {random_value}") | |
image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg']) | |
if image_file: | |
if not os.path.exists("images"): | |
os.makedirs("images") | |
with open(f"images/{image_file.name}", "wb") as f: | |
f.write(image_file.getbuffer()) | |
image_file = f"images/{image_file.name}" | |
# model, tokenizer = init_gpu_model() | |
# model, tokenizer = init_model() | |
# text = get_text(image_file, model, tokenizer) | |
model, processor = init_llama() | |
text = get_llama_op(image_file, model, processor) | |
# model, processor = init_qwen_model() | |
# text = get_quen_op(image_file, model, processor) | |
print(text) | |
st.write(text) |