from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor, MllamaForConditionalGeneration import streamlit as st import os from PIL import Image import requests import torch from torchvision import io from typing import Dict import base64 @st.cache_resource def init_model(): tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True) model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) model = model.eval() return model, tokenizer def init_gpu_model(): tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id) model = model.eval().cuda() return model, tokenizer def init_qwen_model(): model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") return model, processor def get_quen_op(image_file, model, processor): try: image = Image.open(image_file).convert('RGB') conversation = [ { "role":"user", "content":[ { "type":"image", }, { "type":"text", "text":"Extract text from this image." } ] } ] text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt") inputs = {k: v.to(torch.float32) if torch.is_floating_point(v) else v for k, v in inputs.items()} generation_config = { "max_new_tokens": 32, "do_sample": False, "top_k": 20, "top_p": 0.90, "temperature": 0.4, "num_return_sequences": 1, "pad_token_id": processor.tokenizer.pad_token_id, "eos_token_id": processor.tokenizer.eos_token_id, } output_ids = model.generate(**inputs, **generation_config) if 'input_ids' in inputs: generated_ids = output_ids[:, inputs['input_ids'].shape[1]:] else: generated_ids = output_ids output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) return output_text[:] if output_text else "No text extracted from the image." except Exception as e: return f"An error occurred: {str(e)}" @st.cache_resource def init_llama(): model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct" model = MllamaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", token=os.getenv("access_token") ) processor = AutoProcessor.from_pretrained(model_id, token=os.getenv("access_token")) return model, processor def get_llama_op(image_file, model, processor): with open(image_file, "rb") as f: image = base64.b64encode(f.read()).decode('utf-8') image = Image.open(image_file) messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "You are an accurate OCR engine. From the given image, extract the text."} ]} ] input_text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(images=image, text=input_text, return_tensors="pt").to(model.device) output = model.generate(**inputs, max_new_tokens=20) return processor.decode(output[0]) def get_text(image_file, model, tokenizer): res = model.chat(tokenizer, image_file, ocr_type='ocr') return res st.title("Image - Text OCR (General OCR Theory - GOT)") st.write("Upload an image for OCR") MODEL, PROCESSOR = init_model() image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg']) if image_file: if not os.path.exists("images"): os.makedirs("images") with open(f"images/{image_file.name}", "wb") as f: f.write(image_file.getbuffer()) image_file = f"images/{image_file.name}" # model, tokenizer = init_gpu_model() # model, tokenizer = init_model() text = get_text(image_file, MODEL, PROCESSOR) # model, processor = init_llama() # text = get_llama_op(image_file, MODEL, PROCESSOR) # model, processor = init_qwen_model() # text = get_quen_op(image_file, model, processor) print(text) st.write(text)