File size: 6,672 Bytes
52d252c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91a3469
52d252c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import torch.nn as nn
import torch.nn.functional as F


class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        #
        self.refpad01_1 = nn.ReflectionPad2d(3)
        self.conv01_1 = nn.Conv2d(3, 64, 7)
        self.in01_1 = InstanceNormalization(64)
        # relu
        self.conv02_1 = nn.Conv2d(64, 128, 3, 2, 1)
        self.conv02_2 = nn.Conv2d(128, 128, 3, 1, 1)
        self.in02_1 = InstanceNormalization(128)
        # relu
        self.conv03_1 = nn.Conv2d(128, 256, 3, 2, 1)
        self.conv03_2 = nn.Conv2d(256, 256, 3, 1, 1)
        self.in03_1 = InstanceNormalization(256)
        # relu

        ## res block 1
        self.refpad04_1 = nn.ReflectionPad2d(1)
        self.conv04_1 = nn.Conv2d(256, 256, 3)
        self.in04_1 = InstanceNormalization(256)
        # relu
        self.refpad04_2 = nn.ReflectionPad2d(1)
        self.conv04_2 = nn.Conv2d(256, 256, 3)
        self.in04_2 = InstanceNormalization(256)
        # + input

        ## res block 2
        self.refpad05_1 = nn.ReflectionPad2d(1)
        self.conv05_1 = nn.Conv2d(256, 256, 3)
        self.in05_1 = InstanceNormalization(256)
        # relu
        self.refpad05_2 = nn.ReflectionPad2d(1)
        self.conv05_2 = nn.Conv2d(256, 256, 3)
        self.in05_2 = InstanceNormalization(256)
        # + input

        ## res block 3
        self.refpad06_1 = nn.ReflectionPad2d(1)
        self.conv06_1 = nn.Conv2d(256, 256, 3)
        self.in06_1 = InstanceNormalization(256)
        # relu
        self.refpad06_2 = nn.ReflectionPad2d(1)
        self.conv06_2 = nn.Conv2d(256, 256, 3)
        self.in06_2 = InstanceNormalization(256)
        # + input

        ## res block 4
        self.refpad07_1 = nn.ReflectionPad2d(1)
        self.conv07_1 = nn.Conv2d(256, 256, 3)
        self.in07_1 = InstanceNormalization(256)
        # relu
        self.refpad07_2 = nn.ReflectionPad2d(1)
        self.conv07_2 = nn.Conv2d(256, 256, 3)
        self.in07_2 = InstanceNormalization(256)
        # + input

        ## res block 5
        self.refpad08_1 = nn.ReflectionPad2d(1)
        self.conv08_1 = nn.Conv2d(256, 256, 3)
        self.in08_1 = InstanceNormalization(256)
        # relu
        self.refpad08_2 = nn.ReflectionPad2d(1)
        self.conv08_2 = nn.Conv2d(256, 256, 3)
        self.in08_2 = InstanceNormalization(256)
        # + input

        ## res block 6
        self.refpad09_1 = nn.ReflectionPad2d(1)
        self.conv09_1 = nn.Conv2d(256, 256, 3)
        self.in09_1 = InstanceNormalization(256)
        # relu
        self.refpad09_2 = nn.ReflectionPad2d(1)
        self.conv09_2 = nn.Conv2d(256, 256, 3)
        self.in09_2 = InstanceNormalization(256)
        # + input

        ## res block 7
        self.refpad10_1 = nn.ReflectionPad2d(1)
        self.conv10_1 = nn.Conv2d(256, 256, 3)
        self.in10_1 = InstanceNormalization(256)
        # relu
        self.refpad10_2 = nn.ReflectionPad2d(1)
        self.conv10_2 = nn.Conv2d(256, 256, 3)
        self.in10_2 = InstanceNormalization(256)
        # + input

        ## res block 8
        self.refpad11_1 = nn.ReflectionPad2d(1)
        self.conv11_1 = nn.Conv2d(256, 256, 3)
        self.in11_1 = InstanceNormalization(256)
        # relu
        self.refpad11_2 = nn.ReflectionPad2d(1)
        self.conv11_2 = nn.Conv2d(256, 256, 3)
        self.in11_2 = InstanceNormalization(256)
        # + input

        ##------------------------------------##
        self.deconv01_1 = nn.ConvTranspose2d(256, 128, 3, 2, 1, 1)
        self.deconv01_2 = nn.Conv2d(128, 128, 3, 1, 1)
        self.in12_1 = InstanceNormalization(128)
        # relu
        self.deconv02_1 = nn.ConvTranspose2d(128, 64, 3, 2, 1, 1)
        self.deconv02_2 = nn.Conv2d(64, 64, 3, 1, 1)
        self.in13_1 = InstanceNormalization(64)
        # relu
        self.refpad12_1 = nn.ReflectionPad2d(3)
        self.deconv03_1 = nn.Conv2d(64, 3, 7)
        # tanh

    def forward(self, x):
        y = F.relu(self.in01_1(self.conv01_1(self.refpad01_1(x))))
        y = F.relu(self.in02_1(self.conv02_2(self.conv02_1(y))))
        t04 = F.relu(self.in03_1(self.conv03_2(self.conv03_1(y))))

        ##
        y = F.relu(self.in04_1(self.conv04_1(self.refpad04_1(t04))))
        t05 = self.in04_2(self.conv04_2(self.refpad04_2(y))) + t04

        y = F.relu(self.in05_1(self.conv05_1(self.refpad05_1(t05))))
        t06 = self.in05_2(self.conv05_2(self.refpad05_2(y))) + t05

        y = F.relu(self.in06_1(self.conv06_1(self.refpad06_1(t06))))
        t07 = self.in06_2(self.conv06_2(self.refpad06_2(y))) + t06

        y = F.relu(self.in07_1(self.conv07_1(self.refpad07_1(t07))))
        t08 = self.in07_2(self.conv07_2(self.refpad07_2(y))) + t07

        y = F.relu(self.in08_1(self.conv08_1(self.refpad08_1(t08))))
        t09 = self.in08_2(self.conv08_2(self.refpad08_2(y))) + t08

        y = F.relu(self.in09_1(self.conv09_1(self.refpad09_1(t09))))
        t10 = self.in09_2(self.conv09_2(self.refpad09_2(y))) + t09

        y = F.relu(self.in10_1(self.conv10_1(self.refpad10_1(t10))))
        t11 = self.in10_2(self.conv10_2(self.refpad10_2(y))) + t10

        y = F.relu(self.in11_1(self.conv11_1(self.refpad11_1(t11))))
        y = self.in11_2(self.conv11_2(self.refpad11_2(y))) + t11
        ##

        y = F.relu(self.in12_1(self.deconv01_2(self.deconv01_1(y))))
        y = F.relu(self.in13_1(self.deconv02_2(self.deconv02_1(y))))
        y = torch.tanh(self.deconv03_1(self.refpad12_1(y)))

        return y


class InstanceNormalization(nn.Module):
    def __init__(self, dim, eps=1e-9):
        super(InstanceNormalization, self).__init__()
        self.scale = nn.Parameter(torch.FloatTensor(dim))
        self.shift = nn.Parameter(torch.FloatTensor(dim))
        self.eps = eps
        self._reset_parameters()

    def _reset_parameters(self):
        self.scale.data.uniform_()
        self.shift.data.zero_()

    def __call__(self, x):
        n = x.size(2) * x.size(3)
        t = x.view(x.size(0), x.size(1), n)
        mean = torch.mean(t, 2).unsqueeze(2).unsqueeze(3).expand_as(x)
        # Calculate the biased var. torch.var returns unbiased var
        var = torch.var(t, 2).unsqueeze(2).unsqueeze(3).expand_as(x) * (
            (n - 1) / float(n)
        )
        scale_broadcast = self.scale.unsqueeze(1).unsqueeze(1).unsqueeze(0)
        scale_broadcast = scale_broadcast.expand_as(x)
        shift_broadcast = self.shift.unsqueeze(1).unsqueeze(1).unsqueeze(0)
        shift_broadcast = shift_broadcast.expand_as(x)
        out = (x - mean) / torch.sqrt(var + self.eps)
        out = out * scale_broadcast + shift_broadcast
        return out