akuysal commited on
Commit
5734a78
·
1 Parent(s): b944a9e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -1
README.md CHANGED
@@ -10,6 +10,12 @@ pinned: false
10
  license: openrail
11
  ---
12
 
13
- The dataset used in the study "Uysal, A. K., Gunal, S., Ergin, S., & Gunal, E. S. (2013). The impact of feature extraction and selection on SMS spam filtering. Elektronika ir Elektrotechnika, 19(5), 67-72." is employed for training. The success ratios for Linear SVM Classifier is 0.9880 in terms of Macro-F1 when 10% of the dataset was used for testing.
 
 
 
 
 
 
14
 
15
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
10
  license: openrail
11
  ---
12
 
13
+ ENGLISH
14
+ The dataset used in the study "Uysal, A. K., Gunal, S., Ergin, S., & Gunal, E. S. (2013). The impact of feature extraction and selection on SMS spam filtering. Elektronika ir Elektrotechnika, 19(5), 67-72." is employed for training. The success ratio for Linear SVM Classifier is 0.9880 in terms of Macro-F1 when 10% of the dataset was used for testing.
15
+ The dataset is composed of SPAM and LEGITIMATE sms data.
16
+
17
+ TÜRKÇE
18
+ Bu çalışmada "Uysal, A. K., Gunal, S., Ergin, S., & Gunal, E. S. (2013). The impact of feature extraction and selection on SMS spam filtering. Elektronika ir Elektrotechnika, 19(5), 67-72." başlıklı çalışmadaki veri seti kullanılmıştır. Linear SVM sınıflandırıcı için başarı oranı, veri setinin %10'u test için kullanıldığında Makro-F1 açısından 0,9880'dir.
19
+ Veri seti, SPAM ve LEGITIMATE kısa mesaj verilerinden oluşmaktadır.
20
 
21
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference