import argparse
import datetime
import hashlib
import json
import os
import time

import gradio as gr
import requests

from constants import LOGDIR
from conversation import (default_conversation, conv_templates,
                                   SeparatorStyle)
from utils import (build_logger, server_error_msg)


logger = build_logger("gradio_web_server", "gradio_web_server.log")

from model_worker import ModelWorker

no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)



def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    return name

get_window_url_params = """
function() {
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    console.log(url_params);
    return url_params;
    }
"""


def load_demo(url_params, request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")

    global worker
    dropdown_update = gr.Dropdown(visible=True)
    worker = ModelWorker(model_path, None, model_name, True, lora_path)

    state = default_conversation.copy()
    return state, dropdown_update


def vote_last_response(state, vote_type, model_selector, request: gr.Request):
    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "model": model_selector,
            "state": state.dict(),
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")


def upvote_last_response(state, model_selector, request: gr.Request):
    logger.info(f"upvote. ip: {request.client.host}")
    vote_last_response(state, "upvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def downvote_last_response(state, model_selector, request: gr.Request):
    logger.info(f"downvote. ip: {request.client.host}")
    vote_last_response(state, "downvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def flag_last_response(state, model_selector, request: gr.Request):
    logger.info(f"flag. ip: {request.client.host}")
    vote_last_response(state, "flag", model_selector, request)
    return ("",) + (disable_btn,) * 3


def regenerate(state, image_process_mode, request: gr.Request):
    logger.info(f"regenerate. ip: {request.client.host}")
    state.messages[-1][-1] = None
    prev_human_msg = state.messages[-2]
    if type(prev_human_msg[1]) in (tuple, list):
        prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def clear_history(request: gr.Request):
    logger.info(f"clear_history. ip: {request.client.host}")
    state = default_conversation.copy()
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def add_text(state, text, image, image_process_mode, request: gr.Request):
    logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
    if len(text) <= 0 and image is None:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5

    text = text[:1536]  # Hard cut-off
    if image is not None:
        text = text[:1200]  # Hard cut-off for images
        if '<image>' not in text:
            # text = '<Image><image></Image>' + text
            text = text + '\n<image>'
        text = (text, image, image_process_mode)
        state = default_conversation.copy()
    state.append_message(state.roles[0], text)
    state.append_message(state.roles[1], None)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5

def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
    logger.info(f"http_bot. ip: {request.client.host}")
    start_tstamp = time.time()
    model_name = model_selector

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    if len(state.messages) == state.offset + 2:
        # First round of conversation
        if "llava" in model_name.lower():
            if 'llama-2' in model_name.lower():
                template_name = "llava_llama_2"
            elif "mistral" in model_name.lower() or "mixtral" in model_name.lower():
                if 'orca' in model_name.lower():
                    template_name = "mistral_orca"
                elif 'hermes' in model_name.lower():
                    template_name = "chatml_direct"
                else:
                    template_name = "mistral_instruct"
            elif 'llava-v1.6-34b' in model_name.lower():
                template_name = "chatml_direct"
            elif "v1" in model_name.lower():
                if 'mmtag' in model_name.lower():
                    template_name = "v1_mmtag"
                elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
                    template_name = "v1_mmtag"
                else:
                    template_name = "llava_v1"
            elif "mpt" in model_name.lower():
                template_name = "mpt"
            else:
                if 'mmtag' in model_name.lower():
                    template_name = "v0_mmtag"
                elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
                    template_name = "v0_mmtag"
                else:
                    template_name = "llava_v0"
        elif "mpt" in model_name:
            template_name = "mpt_text"
        elif "llama-2" in model_name:
            template_name = "llama_2"
        else:
            template_name = "vicuna_v1"
        new_state = conv_templates[template_name].copy()
        new_state.append_message(new_state.roles[0], state.messages[-2][1])
        new_state.append_message(new_state.roles[1], None)
        state = new_state


    # Construct prompt
    prompt = state.get_prompt()

    all_images = state.get_images(return_pil=True)
    all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
    for image, hash in zip(all_images, all_image_hash):
        t = datetime.datetime.now()
        filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
        if not os.path.isfile(filename):
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            image.save(filename)

    # Make requests
    pload = {
        "model": model_name,
        "prompt": prompt,
        "temperature": float(temperature),
        "top_p": float(top_p),
        "max_new_tokens": min(int(max_new_tokens), 1536),
        "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
        "images": f'List of {len(state.get_images())} images: {all_image_hash}',
    }
    logger.info(f"==== request ====\n{pload}")

    pload['images'] = state.get_images()

    state.messages[-1][-1] = "▌"
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5

    try:
        # Stream output
        for chunk in worker.generate_stream_gate(pload):
            if chunk:
                data = json.loads(chunk.decode())
                if data["error_code"] == 0:
                    output = data["text"][len(prompt):].strip()
                    state.messages[-1][-1] = output + "▌"
                    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
                else:
                    output = data["text"] + f" (error_code: {data['error_code']})"
                    state.messages[-1][-1] = output
                    yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
                    return
                time.sleep(0.03)
    except requests.exceptions.RequestException as e:
        state.messages[-1][-1] = server_error_msg
        yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
        return

    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5

    finish_tstamp = time.time()
    logger.info(f"{output}")

    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(finish_tstamp, 4),
            "type": "chat",
            "model": model_name,
            "start": round(start_tstamp, 4),
            "finish": round(finish_tstamp, 4),
            "state": state.dict(),
            "images": all_image_hash,
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")

title_markdown = ("""
# Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding
[[Project Page](https://XXXXX)] [[Code](https://github.com/AlaaLab/Dr-LLaVA)] | 📚 [[Dr-LLaVA](https://arxiv.org/abs/2405.19567)]] 
""")

tos_markdown = ("""
    This demo is intended for research purposes only and not for medical use.
    The model has not been fine-tuned on non-medical images.
""")


learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")

block_css = """

#buttons button {
    min-width: min(120px,100%);
}

"""

def build_demo(cur_dir=None, concurrency_count=10):
    textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
    with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
        state = gr.State()

        gr.Markdown(title_markdown)
        with gr.Row():
            with gr.Column(scale=2):
                # add a description
                gr.Markdown("""Shenghuan Sun, Gregory Goldgof, Alex Schubert, Zhiqing Sun, Atul Butte, Ahmed Alaa

Demo Creator: [David W. Day](https://github.com/daviddaytw)

This is the demo for Dr-LLaVA: a conversational vision-language model for diagnosing blood cancer using Bone Marrow Aspirate images.

**Instructions:**                  
- Drop a single image from a bone marrow aspirate whole slide image taken at 40x.</li>
                            """)
                # Replace 'path_to_image' with the path to your image file
                gr.Image(value="https://davidday.tw/wp-content/uploads/2024/08/Dr-LLa-VA-Fig-1.jpg", 
                     width=600, interactive=False, type="pil")
            with gr.Column(scale=3):
                with gr.Row(elem_id="model_selector_row"):
                    model_selector = gr.Dropdown(
                        choices=models,
                        value=models[0] if len(models) > 0 else "",
                        interactive=True,
                        show_label=False,
                        container=False)

                imagebox = gr.Image(type="pil")
                image_process_mode = gr.Radio(
                    ["Crop", "Resize", "Pad", "Default"],
                    value="Default",
                    label="Preprocess for non-square image", visible=False)

                if cur_dir is None:
                    cur_dir = os.path.dirname(os.path.abspath(__file__))
                gr.Examples(examples=[
                    [f"{cur_dir}/examples/example1.jpeg", "Can you assess if these pathology images are suitable for identifying cancer upon inspection?"],
                    [f"{cur_dir}/examples/example2.jpeg", "Are you able to recognize the probable illness in the image patch?"],
                ], inputs=[imagebox, textbox])

                with gr.Accordion("Parameters", open=False) as parameter_row:
                    temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
                    top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
                    max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)

            with gr.Column(scale=6):
                chatbot = gr.Chatbot(
                    elem_id="chatbot",
                    label="LLaVA Chatbot",
                    height=470,
                    layout="panel",
                )
                with gr.Row():
                    with gr.Column(scale=8):
                        textbox.render()
                    with gr.Column(scale=1, min_width=50):
                        submit_btn = gr.Button(value="Send", variant="primary")
                with gr.Row(elem_id="buttons") as button_row:
                    upvote_btn = gr.Button(value="👍  Upvote", interactive=False)
                    downvote_btn = gr.Button(value="👎  Downvote", interactive=False)
                    flag_btn = gr.Button(value="⚠ī¸  Flag", interactive=False)
                    #stop_btn = gr.Button(value="⏚ī¸  Stop Generation", interactive=False)
                    regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=False)
                    clear_btn = gr.Button(value="🗑ī¸  Clear", interactive=False)

        gr.Markdown(tos_markdown)
        gr.Markdown(learn_more_markdown)
        url_params = gr.JSON(visible=False)

        # Register listeners
        btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
        upvote_btn.click(
            upvote_last_response,
            [state, model_selector],
            [textbox, upvote_btn, downvote_btn, flag_btn]
        )
        downvote_btn.click(
            downvote_last_response,
            [state, model_selector],
            [textbox, upvote_btn, downvote_btn, flag_btn]
        )
        flag_btn.click(
            flag_last_response,
            [state, model_selector],
            [textbox, upvote_btn, downvote_btn, flag_btn]
        )

        regenerate_btn.click(
            regenerate,
            [state, image_process_mode],
            [state, chatbot, textbox, imagebox] + btn_list
        ).then(
            http_bot,
            [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list,
            concurrency_limit=concurrency_count
        )

        clear_btn.click(
            clear_history,
            None,
            [state, chatbot, textbox, imagebox] + btn_list,
            queue=False
        )

        textbox.submit(
            add_text,
            [state, textbox, imagebox, image_process_mode],
            [state, chatbot, textbox, imagebox] + btn_list,
            queue=False
        ).then(
            http_bot,
            [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list,
            concurrency_limit=concurrency_count
        )

        submit_btn.click(
            add_text,
            [state, textbox, imagebox, image_process_mode],
            [state, chatbot, textbox, imagebox] + btn_list
        ).then(
            http_bot,
            [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list,
            concurrency_limit=concurrency_count
        )
    
        demo.load(
            load_demo,
            [url_params],
            [state, model_selector],
            js=get_window_url_params
        )
    return demo

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int)
    parser.add_argument("--concurrency-count", type=int, default=16)
    parser.add_argument("--share", action="store_true")
    args = parser.parse_args()
    logger.info(f"args: {args}")

    models = ['llava-rlhf-13b-v1.5-336']
    model_path = 'daviddaytw/Dr-LLaVA-sft'
    model_name = 'llava-rlhf-13b-v1.5-336'
    lora_path = 'daviddaytw/Dr-LLaVA-lora-adapter'
    demo = build_demo(concurrency_count=args.concurrency_count)
    demo.queue(
        api_open=False
    ).launch(
        server_name=args.host,
        server_port=args.port,
        share=args.share
    )