Spaces:
Runtime error
Runtime error
alankabisov
commited on
Commit
β’
e06c27b
1
Parent(s):
6c022f9
preview of ui
Browse files
app.py
CHANGED
@@ -1,6 +1,29 @@
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from urllib.parse import urlparse, parse_qs
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
def get_videoid_from_url(url:str):
|
@@ -14,21 +37,84 @@ def get_videoid_from_url(url:str):
|
|
14 |
|
15 |
return video_id
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def main():
|
19 |
st.title('YouTube Video Summary π')
|
20 |
-
st.
|
|
|
|
|
21 |
|
22 |
col1, col2 = st.columns(2)
|
23 |
|
24 |
with col1:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
st.write(get_videoid_from_url(video_id))
|
29 |
|
30 |
with col2:
|
31 |
-
st.button('Process')
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
import streamlit as st
|
5 |
from urllib.parse import urlparse, parse_qs
|
6 |
|
7 |
+
from tqdm import tqdm
|
8 |
+
from stqdm import stqdm
|
9 |
+
|
10 |
+
# https://github.com/pytorch/pytorch/issues/77764
|
11 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
12 |
+
|
13 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
14 |
+
|
15 |
+
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
# Setting device for PYTorch
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
device = torch.device('cuda')
|
22 |
+
elif torch.has_mps:
|
23 |
+
device = torch.device('mps')
|
24 |
+
else:
|
25 |
+
device = torch.device('cpu')
|
26 |
+
|
27 |
|
28 |
|
29 |
def get_videoid_from_url(url:str):
|
|
|
37 |
|
38 |
return video_id
|
39 |
|
40 |
+
def process_click_callback():
|
41 |
+
st.session_state.process_btn = True
|
42 |
+
|
43 |
+
print('Using {} device'.format(device))
|
44 |
+
|
45 |
+
transcript_list = YouTubeTranscriptApi.list_transcripts('aircAruvnKk') # 3blue1Brown
|
46 |
+
|
47 |
+
try:
|
48 |
+
transcript = transcript_list.find_manually_created_transcript(['en'])
|
49 |
+
except Exception as e:
|
50 |
+
print('No manual transcripts were found, trying to load generated ones...')
|
51 |
+
transcript = transcript_list.find_generated_transcript(['en'])
|
52 |
+
|
53 |
+
subtitles = transcript.fetch()
|
54 |
+
|
55 |
+
subtitles = [sbt['text'] for sbt in subtitles if sbt['text'] != '[Music]']
|
56 |
+
subtitles_len = [len(sbt) for sbt in subtitles]
|
57 |
+
sbt_mean_len = sum(subtitles_len)/len(subtitles_len)
|
58 |
+
|
59 |
+
print('Mean length of subtitles: {}'.format(sbt_mean_len))
|
60 |
+
print(subtitles)
|
61 |
+
print(len(subtitles))
|
62 |
+
|
63 |
+
# Number of subtitles per step/summary
|
64 |
+
# Since number length of transcripts differs
|
65 |
+
# between generated and manual ones
|
66 |
+
# we set different step size
|
67 |
+
n_sbt_per_step = int(400 / (sbt_mean_len / 4))
|
68 |
+
print('Number subtitles per summary: {}'.format(n_sbt_per_step))
|
69 |
+
|
70 |
+
n_steps = len(subtitles) // n_sbt_per_step if len(subtitles) % n_sbt_per_step == 0 else \
|
71 |
+
len(subtitles) // n_sbt_per_step + 1
|
72 |
+
|
73 |
+
summaries = []
|
74 |
+
|
75 |
+
for i in stqdm(range(n_steps)):
|
76 |
+
sbt_txt = ' '.join(subtitles[n_sbt_per_step*i:n_sbt_per_step*(i+1)])
|
77 |
+
# print('length of text: {}'.format(len(sbt_txt)))
|
78 |
+
# print(sbt_txt)
|
79 |
+
|
80 |
+
summarizer = pipeline('summarization', model='t5-small', tokenizer='t5-small',
|
81 |
+
max_length=512, truncation=True)
|
82 |
+
|
83 |
+
summary = summarizer(sbt_txt, do_sample=False)
|
84 |
+
summary = summary[0]['summary_text']
|
85 |
+
|
86 |
+
# print('Summary: ' + summary)
|
87 |
+
summaries.append(summary)
|
88 |
+
|
89 |
+
out = ' '.join(summaries)
|
90 |
+
print(out)
|
91 |
+
|
92 |
+
st.session_state.summary_output = out
|
93 |
+
st.success('Processing complete!', icon="β
")
|
94 |
+
st.session_state.process_btn = False
|
95 |
+
|
96 |
+
|
97 |
|
98 |
def main():
|
99 |
st.title('YouTube Video Summary π')
|
100 |
+
st.markdown('Creates summary for given YouTube video URL based on transcripts.')
|
101 |
+
st.code('https://www.youtube.com/watch?v=aircAruvnKk')
|
102 |
+
st.code('https://youtu.be/p0G68ORc8uQ')
|
103 |
|
104 |
col1, col2 = st.columns(2)
|
105 |
|
106 |
with col1:
|
107 |
+
video_url = st.text_input('YouTube Video URL:', placeholder='YouTube URL',
|
108 |
+
label_visibility='collapsed')
|
109 |
+
st.write(get_videoid_from_url(video_url))
|
|
|
110 |
|
111 |
with col2:
|
112 |
+
st.button('Process π', key='process_btn', on_click=process_click_callback)
|
113 |
+
|
114 |
+
st.text_area(label='', key='summary_output', height=444)
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
|
119 |
|
120 |
|