File size: 13,287 Bytes
16c358c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import ast
import random
import re
import time
import traceback

import numpy as np
import torch
import transformers

import modules.shared as shared
from modules.callbacks import (Iteratorize, Stream,
                               _SentinelTokenStoppingCriteria)
from modules.extensions import apply_extensions
from modules.html_generator import generate_4chan_html, generate_basic_html
from modules.models import clear_torch_cache, local_rank


def get_max_prompt_length(state):
    max_length = state['truncation_length'] - state['max_new_tokens']
    if shared.soft_prompt:
        max_length -= shared.soft_prompt_tensor.shape[1]
    return max_length


def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
    if shared.model_type in ['rwkv', 'llamacpp']:
        input_ids = shared.tokenizer.encode(str(prompt))
        input_ids = np.array(input_ids).reshape(1, len(input_ids))
        return input_ids
    else:
        input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens)

        # This is a hack for making replies more creative.
        if not add_bos_token and input_ids[0][0] == shared.tokenizer.bos_token_id:
            input_ids = input_ids[:, 1:]

        # Llama adds this extra token when the first character is '\n', and this
        # compromises the stopping criteria, so we just remove it
        if type(shared.tokenizer) is transformers.LlamaTokenizer and input_ids[0][0] == 29871:
            input_ids = input_ids[:, 1:]

    # Handling truncation
    if truncation_length is not None:
        input_ids = input_ids[:, -truncation_length:]

    if shared.model_type in ['rwkv', 'llamacpp'] or shared.args.cpu:
        return input_ids
    elif shared.args.flexgen:
        return input_ids.numpy()
    elif shared.args.deepspeed:
        return input_ids.to(device=local_rank)
    elif torch.has_mps:
        device = torch.device('mps')
        return input_ids.to(device)
    else:
        return input_ids.cuda()


def decode(output_ids, skip_special_tokens=True):
    if skip_special_tokens:
        reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
        reply = reply.replace(r'<|endoftext|>', '')
        return reply
    else:
        return shared.tokenizer.decode(output_ids, skip_special_tokens=False)


def generate_softprompt_input_tensors(input_ids):
    inputs_embeds = shared.model.transformer.wte(input_ids)
    inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
    filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
    # filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
    return inputs_embeds, filler_input_ids


# Removes empty replies from gpt4chan outputs
def fix_gpt4chan(s):
    for i in range(10):
        s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
        s = re.sub("--- [0-9]*\n *\n---", "---", s)
        s = re.sub("--- [0-9]*\n\n\n---", "---", s)
    return s


# Fix the LaTeX equations in galactica
def fix_galactica(s):
    s = s.replace(r'\[', r'$')
    s = s.replace(r'\]', r'$')
    s = s.replace(r'\(', r'$')
    s = s.replace(r'\)', r'$')
    s = s.replace(r'$$', r'$')
    s = re.sub(r'\n', r'\n\n', s)
    s = re.sub(r"\n{3,}", "\n\n", s)
    return s


def formatted_outputs(reply, model_name):
    if not shared.is_chat():
        if shared.model_type == 'galactica':
            reply = fix_galactica(reply)
            return reply, reply, generate_basic_html(reply)
        elif shared.model_type == 'gpt4chan':
            reply = fix_gpt4chan(reply)
            return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
        else:
            return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
    else:
        return reply


def set_manual_seed(seed):
    seed = int(seed)
    if seed == -1:
        seed = random.randint(1, 2**31)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
    return seed


def stop_everything_event():
    shared.stop_everything = True


def generate_reply(question, state, eos_token=None, stopping_strings=[]):

    if shared.model_name == 'None' or shared.model is None:
        print("No model is loaded! Select one in the Model tab.")
        yield formatted_outputs(question, shared.model_name)
        return

    clear_torch_cache()
    seed = set_manual_seed(state['seed'])
    shared.stop_everything = False
    generate_params = {}
    t0 = time.time()

    original_question = question
    if not shared.is_chat():
        question = apply_extensions('input', question)

    # These models are not part of Hugging Face, so we handle them
    # separately and terminate the function call earlier
    if shared.model_type in ['rwkv', 'llamacpp']:

        if shared.args.verbose:
            print(f'\n\n{question}\n--------------------\n')

        for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']:
            generate_params[k] = state[k]
        generate_params['token_count'] = state['max_new_tokens']
        try:
            if shared.args.no_stream:
                reply = shared.model.generate(context=question, **generate_params)
                output = original_question + reply
                if not shared.is_chat():
                    reply = original_question + apply_extensions('output', reply)
                yield formatted_outputs(reply, shared.model_name)
            else:
                if not shared.is_chat():
                    yield formatted_outputs(question, shared.model_name)

                # RWKV has proper streaming, which is very nice.
                # No need to generate 8 tokens at a time.
                for reply in shared.model.generate_with_streaming(context=question, **generate_params):
                    output = original_question + reply
                    if not shared.is_chat():
                        reply = original_question + apply_extensions('output', reply)
                    yield formatted_outputs(reply, shared.model_name)

        except Exception:
            traceback.print_exc()
        finally:
            t1 = time.time()
            original_tokens = len(encode(original_question)[0])
            new_tokens = len(encode(output)[0]) - original_tokens
            print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
            return

    input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state))
    output = input_ids[0]

    if shared.args.verbose:
        print(f'\n\n{decode(input_ids[0], state["skip_special_tokens"])}\n--------------------\n')

    cuda = not any((shared.args.cpu, shared.args.deepspeed, shared.args.flexgen))
    eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
    if eos_token is not None:
        eos_token_ids.append(int(encode(eos_token)[0][-1]))

    # Handling the stopping strings
    stopping_criteria_list = transformers.StoppingCriteriaList()
    for st in (stopping_strings, ast.literal_eval(f"[{state['custom_stopping_strings']}]")):
        if type(st) is list and len(st) > 0:
            sentinel_token_ids = [encode(string, add_special_tokens=False) for string in st]
            stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=sentinel_token_ids, starting_idx=len(input_ids[0])))
            break

    if not shared.args.flexgen:
        for k in ['max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']:
            generate_params[k] = state[k]
        generate_params['eos_token_id'] = eos_token_ids
        generate_params['stopping_criteria'] = stopping_criteria_list
        if state['ban_eos_token']:
            generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id]
    else:
        for k in ['max_new_tokens', 'do_sample', 'temperature']:
            generate_params[k] = state[k]
        generate_params['stop'] = eos_token_ids[-1]
        if not shared.args.no_stream:
            generate_params['max_new_tokens'] = 8

    if shared.args.no_cache:
        generate_params.update({'use_cache': False})
    if shared.args.deepspeed:
        generate_params.update({'synced_gpus': True})
    if shared.soft_prompt:
        inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
        question, filler_input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, filler_input_ids, inputs_embeds)
        original_input_ids = input_ids
        generate_params.update({'inputs_embeds': inputs_embeds})
        generate_params.update({'inputs': filler_input_ids})
    else:
        question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None)
        original_input_ids = input_ids
        generate_params.update({'inputs': input_ids})
        if inputs_embeds is not None:
            generate_params.update({'inputs_embeds': inputs_embeds})

    try:
        # Generate the entire reply at once.
        if shared.args.no_stream:
            with torch.no_grad():
                output = shared.model.generate(**generate_params)[0]
                if cuda:
                    output = output.cuda()

            if shared.soft_prompt:
                output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))

            new_tokens = len(output) - len(input_ids[0])
            reply = decode(output[-new_tokens:], state['skip_special_tokens'])
            if not shared.is_chat():
                reply = original_question + apply_extensions('output', reply)

            yield formatted_outputs(reply, shared.model_name)

        # Stream the reply 1 token at a time.
        # This is based on the trick of using 'stopping_criteria' to create an iterator.
        elif not shared.args.flexgen:

            def generate_with_callback(callback=None, **kwargs):
                kwargs['stopping_criteria'].append(Stream(callback_func=callback))
                clear_torch_cache()
                with torch.no_grad():
                    shared.model.generate(**kwargs)

            def generate_with_streaming(**kwargs):
                return Iteratorize(generate_with_callback, kwargs, callback=None)

            if not shared.is_chat():
                yield formatted_outputs(original_question, shared.model_name)

            with generate_with_streaming(**generate_params) as generator:
                for output in generator:
                    if shared.soft_prompt:
                        output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))

                    new_tokens = len(output) - len(input_ids[0])
                    reply = decode(output[-new_tokens:], state['skip_special_tokens'])
                    if not shared.is_chat():
                        reply = original_question + apply_extensions('output', reply)

                    if output[-1] in eos_token_ids:
                        break

                    yield formatted_outputs(reply, shared.model_name)

        # Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
        else:
            for i in range(state['max_new_tokens'] // 8 + 1):
                clear_torch_cache()
                with torch.no_grad():
                    output = shared.model.generate(**generate_params)[0]

                if shared.soft_prompt:
                    output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))

                new_tokens = len(output) - len(original_input_ids[0])
                reply = decode(output[-new_tokens:], state['skip_special_tokens'])
                if not shared.is_chat():
                    reply = original_question + apply_extensions('output', reply)

                if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)):
                    break

                yield formatted_outputs(reply, shared.model_name)
                input_ids = np.reshape(output, (1, output.shape[0]))
                if shared.soft_prompt:
                    inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
                    generate_params.update({'inputs_embeds': inputs_embeds})
                    generate_params.update({'inputs': filler_input_ids})
                else:
                    generate_params.update({'inputs': input_ids})

            yield formatted_outputs(reply, shared.model_name)

    except Exception:
        traceback.print_exc()
    finally:
        t1 = time.time()
        original_tokens = len(original_input_ids[0])
        new_tokens = len(output) - original_tokens
        print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
        return