File size: 10,417 Bytes
16c358c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
'''
Downloads models from Hugging Face to models/model-name.

Example:
python download-model.py facebook/opt-1.3b

'''

import argparse
import base64
import datetime
import hashlib
import json
import re
import sys
from pathlib import Path

import requests
import tqdm
from tqdm.contrib.concurrent import thread_map


def select_model_from_default_options():
    models = {
        "OPT 6.7B": ("facebook", "opt-6.7b", "main"),
        "OPT 2.7B": ("facebook", "opt-2.7b", "main"),
        "OPT 1.3B": ("facebook", "opt-1.3b", "main"),
        "OPT 350M": ("facebook", "opt-350m", "main"),
        "GALACTICA 6.7B": ("facebook", "galactica-6.7b", "main"),
        "GALACTICA 1.3B": ("facebook", "galactica-1.3b", "main"),
        "GALACTICA 125M": ("facebook", "galactica-125m", "main"),
        "Pythia-6.9B-deduped": ("EleutherAI", "pythia-6.9b-deduped", "main"),
        "Pythia-2.8B-deduped": ("EleutherAI", "pythia-2.8b-deduped", "main"),
        "Pythia-1.4B-deduped": ("EleutherAI", "pythia-1.4b-deduped", "main"),
        "Pythia-410M-deduped": ("EleutherAI", "pythia-410m-deduped", "main"),
    }
    choices = {}

    print("Select the model that you want to download:\n")
    for i, name in enumerate(models):
        char = chr(ord('A') + i)
        choices[char] = name
        print(f"{char}) {name}")
    char_hugging = chr(ord('A') + len(models))
    print(f"{char_hugging}) Manually specify a Hugging Face model")
    char_exit = chr(ord('A') + len(models) + 1)
    print(f"{char_exit}) Do not download a model")

    print()
    print("Input> ", end='')
    choice = input()[0].strip().upper()
    if choice == char_exit:
        exit()
    elif choice == char_hugging:
        print("""\nThen type the name of your desired Hugging Face model in the format organization/name.

Examples:
facebook/opt-1.3b
EleutherAI/pythia-1.4b-deduped
""")

        print("Input> ", end='')
        model = input()
        branch = "main"
    else:
        arr = models[choices[choice]]
        model = f"{arr[0]}/{arr[1]}"
        branch = arr[2]

    return model, branch


def sanitize_model_and_branch_names(model, branch):
    if model[-1] == '/':
        model = model[:-1]
    if branch is None:
        branch = "main"
    else:
        pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
        if not pattern.match(branch):
            raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")

    return model, branch


def get_download_links_from_huggingface(model, branch, text_only=False):
    base = "https://huggingface.co"
    page = f"/api/models/{model}/tree/{branch}"
    cursor = b""

    links = []
    sha256 = []
    classifications = []
    has_pytorch = False
    has_pt = False
    has_ggml = False
    has_safetensors = False
    is_lora = False
    while True:
        url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
        r = requests.get(url)
        r.raise_for_status()
        content = r.content

        dict = json.loads(content)
        if len(dict) == 0:
            break

        for i in range(len(dict)):
            fname = dict[i]['path']
            if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
                is_lora = True

            is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
            is_safetensors = re.match(".*\.safetensors", fname)
            is_pt = re.match(".*\.pt", fname)
            is_ggml = re.match("ggml.*\.bin", fname)
            is_tokenizer = re.match("(tokenizer|ice).*\.model", fname)
            is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer

            if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)):
                if 'lfs' in dict[i]:
                    sha256.append([fname, dict[i]['lfs']['oid']])
                if is_text:
                    links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
                    classifications.append('text')
                    continue
                if not text_only:
                    links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
                    if is_safetensors:
                        has_safetensors = True
                        classifications.append('safetensors')
                    elif is_pytorch:
                        has_pytorch = True
                        classifications.append('pytorch')
                    elif is_pt:
                        has_pt = True
                        classifications.append('pt')
                    elif is_ggml:
                        has_ggml = True
                        classifications.append('ggml')

        cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
        cursor = base64.b64encode(cursor)
        cursor = cursor.replace(b'=', b'%3D')

    # If both pytorch and safetensors are available, download safetensors only
    if (has_pytorch or has_pt) and has_safetensors:
        for i in range(len(classifications) - 1, -1, -1):
            if classifications[i] in ['pytorch', 'pt']:
                links.pop(i)

    return links, sha256, is_lora


def get_output_folder(model, branch, is_lora, base_folder=None):
    if base_folder is None:
        base_folder = 'models' if not is_lora else 'loras'

    output_folder = f"{'_'.join(model.split('/')[-2:])}"
    if branch != 'main':
        output_folder += f'_{branch}'
    output_folder = Path(base_folder) / output_folder
    return output_folder


def get_single_file(url, output_folder, start_from_scratch=False):
    filename = Path(url.rsplit('/', 1)[1])
    output_path = output_folder / filename
    if output_path.exists() and not start_from_scratch:
        # Check if the file has already been downloaded completely
        r = requests.get(url, stream=True)
        total_size = int(r.headers.get('content-length', 0))
        if output_path.stat().st_size >= total_size:
            return
        # Otherwise, resume the download from where it left off
        headers = {'Range': f'bytes={output_path.stat().st_size}-'}
        mode = 'ab'
    else:
        headers = {}
        mode = 'wb'

    r = requests.get(url, stream=True, headers=headers)
    with open(output_path, mode) as f:
        total_size = int(r.headers.get('content-length', 0))
        block_size = 1024
        with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
            for data in r.iter_content(block_size):
                t.update(len(data))
                f.write(data)


def start_download_threads(file_list, output_folder, start_from_scratch=False, threads=1):
    thread_map(lambda url: get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)


def download_model_files(model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1):
    # Creating the folder and writing the metadata
    if not output_folder.exists():
        output_folder.mkdir()
    with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
        f.write(f'url: https://huggingface.co/{model}\n')
        f.write(f'branch: {branch}\n')
        f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
        sha256_str = ''
        for i in range(len(sha256)):
            sha256_str += f'    {sha256[i][1]} {sha256[i][0]}\n'
        if sha256_str != '':
            f.write(f'sha256sum:\n{sha256_str}')

    # Downloading the files
    print(f"Downloading the model to {output_folder}")
    start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)


def check_model_files(model, branch, links, sha256, output_folder):
    # Validate the checksums
    validated = True
    for i in range(len(sha256)):
        fpath = (output_folder / sha256[i][0])

        if not fpath.exists():
            print(f"The following file is missing: {fpath}")
            validated = False
            continue

        with open(output_folder / sha256[i][0], "rb") as f:
            bytes = f.read()
            file_hash = hashlib.sha256(bytes).hexdigest()
            if file_hash != sha256[i][1]:
                print(f'Checksum failed: {sha256[i][0]}  {sha256[i][1]}')
                validated = False
            else:
                print(f'Checksum validated: {sha256[i][0]}  {sha256[i][1]}')

    if validated:
        print('[+] Validated checksums of all model files!')
    else:
        print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.')


if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('MODEL', type=str, default=None, nargs='?')
    parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
    parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
    parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
    parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
    parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.')
    parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.')
    args = parser.parse_args()

    branch = args.branch
    model = args.MODEL
    if model is None:
        model, branch = select_model_from_default_options()

    # Cleaning up the model/branch names
    try:
        model, branch = sanitize_model_and_branch_names(model, branch)
    except ValueError as err_branch:
        print(f"Error: {err_branch}")
        sys.exit()

    # Getting the download links from Hugging Face
    links, sha256, is_lora = get_download_links_from_huggingface(model, branch, text_only=args.text_only)

    # Getting the output folder
    output_folder = get_output_folder(model, branch, is_lora, base_folder=args.output)

    if args.check:
        # Check previously downloaded files
        check_model_files(model, branch, links, sha256, output_folder)
    else:
        # Download files
        download_model_files(model, branch, links, sha256, output_folder, threads=args.threads)