File size: 12,200 Bytes
16c358c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import gc
import json
import os
import re
import time
import zipfile
from pathlib import Path

import numpy as np
import torch
import transformers
from accelerate import infer_auto_device_map, init_empty_weights
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
                          AutoTokenizer, BitsAndBytesConfig, LlamaTokenizer)

import modules.shared as shared
from modules import llama_attn_hijack

transformers.logging.set_verbosity_error()

if shared.args.flexgen:
    from flexgen.flex_opt import CompressionConfig, ExecutionEnv, OptLM, Policy

local_rank = None
if shared.args.deepspeed:
    import deepspeed
    from transformers.deepspeed import (HfDeepSpeedConfig,
                                        is_deepspeed_zero3_enabled)

    from modules.deepspeed_parameters import generate_ds_config

    # Distributed setup
    local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
    world_size = int(os.getenv("WORLD_SIZE", "1"))
    torch.cuda.set_device(local_rank)
    deepspeed.init_distributed()
    ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
    dschf = HfDeepSpeedConfig(ds_config)  # Keep this object alive for the Transformers integration


def find_model_type(model_name):
    model_name = model_name.lower()
    if 'rwkv-' in model_name:
        return 'rwkv'
    elif len(list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin'))) > 0:
        return 'llamacpp'
    elif re.match('.*ggml.*\.bin', model_name):
        return 'llamacpp'
    elif 'chatglm' in model_name:
        return 'chatglm'
    elif 'galactica' in model_name:
        return 'galactica'
    elif 'llava' in model_name:
        return 'llava'
    elif any((k in model_name for k in ['gpt4chan', 'gpt-4chan'])):
        return 'gpt4chan'
    else:
        return 'HF_generic'


def load_model(model_name):
    print(f"Loading {model_name}...")
    t0 = time.time()

    shared.model_type = find_model_type(model_name)
    if shared.model_type == 'chatglm':
        LoaderClass = AutoModel
        trust_remote_code = shared.args.trust_remote_code
    else:
        LoaderClass = AutoModelForCausalLM
        trust_remote_code = False

    # Load the model in simple 16-bit mode by default
    if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.wbits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.model_type in ['rwkv', 'llamacpp']]):
        model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16, trust_remote_code=trust_remote_code)
        if torch.has_mps:
            device = torch.device('mps')
            model = model.to(device)
        else:
            model = model.cuda()

    # FlexGen
    elif shared.args.flexgen:
        # Initialize environment
        env = ExecutionEnv.create(shared.args.disk_cache_dir)

        # Offloading policy
        policy = Policy(1, 1,
                        shared.args.percent[0], shared.args.percent[1],
                        shared.args.percent[2], shared.args.percent[3],
                        shared.args.percent[4], shared.args.percent[5],
                        overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
                        cpu_cache_compute=False, attn_sparsity=1.0,
                        compress_weight=shared.args.compress_weight,
                        comp_weight_config=CompressionConfig(
                            num_bits=4, group_size=64,
                            group_dim=0, symmetric=False),
                        compress_cache=False,
                        comp_cache_config=CompressionConfig(
                            num_bits=4, group_size=64,
                            group_dim=2, symmetric=False))

        model = OptLM(f"facebook/{model_name}", env, shared.args.model_dir, policy)

    # DeepSpeed ZeRO-3
    elif shared.args.deepspeed:
        model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
        model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
        model.module.eval()  # Inference
        print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")

    # RMKV model (not on HuggingFace)
    elif shared.model_type == 'rwkv':
        from modules.RWKV import RWKVModel, RWKVTokenizer

        model = RWKVModel.from_pretrained(Path(f'{shared.args.model_dir}/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
        tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir))

        return model, tokenizer

    # llamacpp model
    elif shared.model_type == 'llamacpp':
        from modules.llamacpp_model_alternative import LlamaCppModel

        path = Path(f'{shared.args.model_dir}/{model_name}')
        if path.is_file():
            model_file = path
        else:
            model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin'))[0]

        print(f"llama.cpp weights detected: {model_file}\n")
        model, tokenizer = LlamaCppModel.from_pretrained(model_file)
        return model, tokenizer

    # Quantized model
    elif shared.args.wbits > 0:

        # Monkey patch
        if shared.args.monkey_patch:
            print("Warning: applying the monkey patch for using LoRAs in 4-bit mode.\nIt may cause undefined behavior outside its intended scope.")
            from modules.monkey_patch_gptq_lora import load_model_llama

            model, tokenizer = load_model_llama(model_name)
            return model, tokenizer

        # No monkey patch
        else:
            from modules.GPTQ_loader import load_quantized

            model = load_quantized(model_name)

    # Custom
    else:
        params = {"low_cpu_mem_usage": True}
        if not any((shared.args.cpu, torch.cuda.is_available(), torch.has_mps)):
            print("Warning: torch.cuda.is_available() returned False.\nThis means that no GPU has been detected.\nFalling back to CPU mode.\n")
            shared.args.cpu = True

        if shared.args.cpu:
            params["torch_dtype"] = torch.float32
        else:
            params["device_map"] = 'auto'
            params["trust_remote_code"] = trust_remote_code
            if shared.args.load_in_8bit and any((shared.args.auto_devices, shared.args.gpu_memory)):
                params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
            elif shared.args.load_in_8bit:
                params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
            elif shared.args.bf16:
                params["torch_dtype"] = torch.bfloat16
            else:
                params["torch_dtype"] = torch.float16

            if shared.args.gpu_memory:
                memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory))
                max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
                max_memory = {}
                for i in range(len(memory_map)):
                    max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i]
                max_memory['cpu'] = max_cpu_memory
                params['max_memory'] = max_memory
            elif shared.args.auto_devices:
                total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024))
                suggestion = round((total_mem - 1000) / 1000) * 1000
                if total_mem - suggestion < 800:
                    suggestion -= 1000
                suggestion = int(round(suggestion / 1000))
                print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")

                max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'}
                params['max_memory'] = max_memory

            if shared.args.disk:
                params["offload_folder"] = shared.args.disk_cache_dir

        checkpoint = Path(f'{shared.args.model_dir}/{model_name}')

        if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto':
            config = AutoConfig.from_pretrained(checkpoint)
            with init_empty_weights():
                model = LoaderClass.from_config(config)
            model.tie_weights()
            params['device_map'] = infer_auto_device_map(
                model,
                dtype=torch.int8,
                max_memory=params['max_memory'],
                no_split_module_classes=model._no_split_modules
            )

        model = LoaderClass.from_pretrained(checkpoint, **params)

    # Hijack attention with xformers
    if any((shared.args.xformers, shared.args.sdp_attention)):
        llama_attn_hijack.hijack_llama_attention()

    # Loading the tokenizer
    if shared.model_type == 'gpt4chan' and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists():
        tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/"))
    elif type(model) is transformers.LlamaForCausalLM:
        tokenizer = None

        # Try to load an universal LLaMA tokenizer
        if shared.model_type != 'llava':
            for p in [Path(f"{shared.args.model_dir}/llama-tokenizer/"), Path(f"{shared.args.model_dir}/oobabooga_llama-tokenizer/")]:
                if p.exists():
                    print(f"Loading the universal LLaMA tokenizer from {p}...")
                    tokenizer = LlamaTokenizer.from_pretrained(p, clean_up_tokenization_spaces=True)
                    break

        # Otherwise, load it from the model folder and hope that these
        # are not outdated tokenizer files.
        if tokenizer is None:
            tokenizer = LlamaTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}/"), clean_up_tokenization_spaces=True)
            try:
                tokenizer.eos_token_id = 2
                tokenizer.bos_token_id = 1
                tokenizer.pad_token_id = 0
            except:
                pass
    else:
        tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}/"), trust_remote_code=trust_remote_code)

    print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
    return model, tokenizer


def clear_torch_cache():
    gc.collect()
    if not shared.args.cpu:
        torch.cuda.empty_cache()


def unload_model():
    shared.model = shared.tokenizer = None
    clear_torch_cache()


def reload_model():
    unload_model()
    shared.model, shared.tokenizer = load_model(shared.model_name)


def load_soft_prompt(name):
    if name == 'None':
        shared.soft_prompt = False
        shared.soft_prompt_tensor = None
    else:
        with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
            zf.extract('tensor.npy')
            zf.extract('meta.json')
            j = json.loads(open('meta.json', 'r').read())
            print(f"\nLoading the softprompt \"{name}\".")
            for field in j:
                if field != 'name':
                    if type(j[field]) is list:
                        print(f"{field}: {', '.join(j[field])}")
                    else:
                        print(f"{field}: {j[field]}")
            print()
            tensor = np.load('tensor.npy')
            Path('tensor.npy').unlink()
            Path('meta.json').unlink()
        tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
        tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))

        shared.soft_prompt = True
        shared.soft_prompt_tensor = tensor

    return name