Spaces:
Configuration error
Configuration error
''' | |
Based on | |
https://github.com/abetlen/llama-cpp-python | |
Documentation: | |
https://abetlen.github.io/llama-cpp-python/ | |
''' | |
from llama_cpp import Llama, LlamaCache | |
from modules import shared | |
from modules.callbacks import Iteratorize | |
class LlamaCppModel: | |
def __init__(self): | |
self.initialized = False | |
def from_pretrained(self, path): | |
result = self() | |
params = { | |
'model_path': str(path), | |
'n_ctx': 2048, | |
'seed': 0, | |
'n_threads': shared.args.threads or None, | |
'n_batch': shared.args.n_batch | |
} | |
self.model = Llama(**params) | |
self.model.set_cache(LlamaCache) | |
# This is ugly, but the model and the tokenizer are the same object in this library. | |
return result, result | |
def encode(self, string): | |
if type(string) is str: | |
string = string.encode() | |
return self.model.tokenize(string) | |
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None): | |
if type(context) is str: | |
context = context.encode() | |
tokens = self.model.tokenize(context) | |
output = b"" | |
count = 0 | |
for token in self.model.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repetition_penalty): | |
text = self.model.detokenize([token]) | |
output += text | |
if callback: | |
callback(text.decode()) | |
count += 1 | |
if count >= token_count or (token == self.model.token_eos()): | |
break | |
return output.decode() | |
def generate_with_streaming(self, **kwargs): | |
with Iteratorize(self.generate, kwargs, callback=None) as generator: | |
reply = '' | |
for token in generator: | |
reply += token | |
yield reply | |