File size: 11,689 Bytes
0914710 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import unittest
from unittest.mock import patch
import numpy as np
from samgis_core.utilities.utilities import hash_calculate
from samgis.io import raster_helpers
def get_three_channels(size=5, param1=1000, param2=3, param3=-88):
arr_base = np.arange(size*size).reshape(size, size) / size**2
channel_0 = arr_base * param1
channel_1 = arr_base * param2
channel_2 = arr_base * param3
return channel_0, channel_1, channel_2
def helper_bell(size=10, param1=0.1, param2=2):
x = np.linspace(-size, size, num=size**2)
y = np.linspace(-size, size, num=size**2)
x, y = np.meshgrid(x, y)
return np.exp(-param1 * x ** param2 - param1 * y ** param2)
arr_5x5x5 = np.arange(125).reshape((5, 5, 5)) / 25
arr = np.arange(25).resize((5, 5))
channel0, channel1, channel2 = get_three_channels()
z = helper_bell()
slope_z_cellsize3, curvature_z_cellsize3 = raster_helpers.get_slope_curvature(z, slope_cellsize=3)
class Test(unittest.TestCase):
def test_get_rgb_prediction_image_real(self):
output = raster_helpers.get_rgb_prediction_image(z, slope_cellsize=61, invert_image=True)
hash_output = hash_calculate(output)
assert hash_output == b'QpQ9yxgCLw9cf3klNFKNFXIDHaSkuiZxkbpeQApR8pA='
output = raster_helpers.get_rgb_prediction_image(z, slope_cellsize=61, invert_image=False)
hash_output = hash_calculate(output)
assert hash_output == b'Y+iXO9w/sKzNVOw2rBh2JrVGJUFRqaa8/0F9hpevmLs='
@patch.object(raster_helpers, "get_slope_curvature")
@patch.object(raster_helpers, "normalize_array_list")
@patch.object(raster_helpers, "get_rgb_image")
def test_get_rgb_prediction_image_mocked(self, get_rgb_image_mocked, normalize_array_list, get_slope_curvature):
local_arr = np.array(z * 100, dtype=np.uint8)
get_slope_curvature.return_value = slope_z_cellsize3, curvature_z_cellsize3
normalize_array_list.side_effect = None
get_rgb_image_mocked.return_value = np.bitwise_not(local_arr)
output = raster_helpers.get_rgb_prediction_image(local_arr, slope_cellsize=61, invert_image=True)
hash_output = hash_calculate(output)
assert hash_output == b'BPIyVH64RgVunj42EuQAx4/v59Va8ZAjcMnuiGNqTT0='
get_rgb_image_mocked.return_value = local_arr
output = raster_helpers.get_rgb_prediction_image(local_arr, slope_cellsize=61, invert_image=False)
hash_output = hash_calculate(output)
assert hash_output == b'XX54sdLQQUrhkUHT6ikQZYSloMYDSfh/AGITDq6jnRM='
@patch.object(raster_helpers, "get_slope_curvature")
def test_get_rgb_prediction_image_value_error(self, get_slope_curvature):
msg = "this is a value error"
get_slope_curvature.side_effect = ValueError(msg)
with self.assertRaises(ValueError):
try:
raster_helpers.get_rgb_prediction_image(arr, slope_cellsize=3)
except ValueError as ve:
self.assertEqual(str(ve), msg)
raise ve
def test_get_rgb_image(self):
output = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=True)
hash_output = hash_calculate(output)
assert hash_output == b'YVnRWla5Ptfet6reSfM+OEIsGytLkeso6X+CRs34YHk='
output = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=False)
hash_output = hash_calculate(output)
assert hash_output == b'LC/kIZGUZULSrwwSXCeP1My2spTZdW9D7LH+tltwERs='
def test_get_rgb_image_value_error_1(self):
with self.assertRaises(ValueError):
try:
raster_helpers.get_rgb_image(arr_5x5x5, arr_5x5x5, arr_5x5x5, invert_image=True)
except ValueError as ve:
self.assertEqual(f"arr_size, wrong type:{type(arr_5x5x5)} or arr_size:{arr_5x5x5.shape}.", str(ve))
raise ve
def test_get_rgb_image_value_error2(self):
arr_0 = np.arange(25).reshape((5, 5))
arr_1 = np.arange(4).reshape((2, 2))
with self.assertRaises(ValueError):
try:
raster_helpers.get_rgb_image(arr_0, arr_1, channel2, invert_image=True)
except ValueError as ve:
self.assertEqual('could not broadcast input array from shape (2,2) into shape (5,5)', str(ve))
raise ve
def test_get_slope_curvature(self):
slope_output, curvature_output = raster_helpers.get_slope_curvature(z, slope_cellsize=3)
hash_curvature = hash_calculate(curvature_output)
hash_slope = hash_calculate(slope_output)
assert hash_curvature == b'LAL9JFOjJP9D6X4X3fVCpnitx9VPM9drS5YMHwMZ3iE='
assert hash_slope == b'IYf6x4G0lmR47j6HRS5kUYWdtmimhLz2nak8py75nwc='
def test_get_slope_curvature_value_error(self):
from samgis.io import raster_helpers
with self.assertRaises(ValueError):
try:
raster_helpers.get_slope_curvature(np.array(1), slope_cellsize=3)
except ValueError as ve:
self.assertEqual('not enough values to unpack (expected 2, got 0)', str(ve))
raise ve
def test_calculate_slope(self):
slope_output = raster_helpers.calculate_slope(z, cell_size=3)
hash_output = hash_calculate(slope_output)
assert hash_output == b'IYf6x4G0lmR47j6HRS5kUYWdtmimhLz2nak8py75nwc='
def test_calculate_slope_value_error(self):
with self.assertRaises(ValueError):
try:
raster_helpers.calculate_slope(np.array(1), cell_size=3)
except ValueError as ve:
self.assertEqual('not enough values to unpack (expected 2, got 0)', str(ve))
raise ve
def test_normalize_array(self):
def check_ndarrays_almost_equal(cls, arr1, arr2, places, check_type="float", check_ndiff=1):
count_abs_diff = 0
for list00, list01 in zip(arr1.tolist(), arr2.tolist()):
for el00, el01 in zip(list00, list01):
ndiff = abs(el00 - el01)
if el00 != el01:
count_abs_diff += 1
if check_type == "float":
cls.assertAlmostEqual(el00, el01, places=places)
cls.assertTrue(ndiff < check_ndiff)
print("count_abs_diff:", count_abs_diff)
normalized_array = raster_helpers.normalize_array(z)
hash_output = hash_calculate(normalized_array)
assert hash_output == b'MPkQwiiQa5NxL7LDvCS9V143YUEJT/Qh1aNEKc/Ehvo='
mult_variable = 3.423
test_array_input = np.arange(256).reshape((16, 16))
test_array_output = raster_helpers.normalize_array(test_array_input * mult_variable)
check_ndarrays_almost_equal(self, test_array_output, test_array_input, places=8)
test_array_output1 = raster_helpers.normalize_array(test_array_input * mult_variable, high=128, norm_type="int")
o = np.arange(256).reshape((16, 16)) / 2
expected_array_output1 = o.astype(int)
check_ndarrays_almost_equal(
self, test_array_output1, expected_array_output1, places=2, check_type="int", check_ndiff=2)
@patch.object(np, "nanmin")
@patch.object(np, "nanmax")
def test_normalize_array_floating_point_error_mocked(self, nanmax_mocked, nanmin_mocked):
nanmax_mocked.return_value = 100
nanmin_mocked.return_value = 100
with self.assertRaises(ValueError):
try:
raster_helpers.normalize_array(
np.arange(25).reshape((5, 5))
)
except ValueError as ve:
self.assertEqual(
"normalize_array:::h_arr_max:100,h_min_arr:100,fe:divide by zero encountered in divide.",
str(ve)
)
raise ve
@patch.object(np, "nanmin")
@patch.object(np, "nanmax")
def test_normalize_array_exception_error_mocked(self, nanmax_mocked, nanmin_mocked):
nanmax_mocked.return_value = 100
nanmin_mocked.return_value = np.NaN
with self.assertRaises(ValueError):
try:
raster_helpers.normalize_array(
np.arange(25).reshape((5, 5))
)
except ValueError as ve:
self.assertEqual("cannot convert float NaN to integer", str(ve))
raise ve
def test_normalize_array_value_error(self):
with self.assertRaises(ValueError):
try:
raster_helpers.normalize_array(
np.zeros((5, 5))
)
except ValueError as ve:
self.assertEqual(
"normalize_array::empty array '',h_min_arr:0.0,h_arr_max:0.0,h_diff:0.0, " 'dtype:float64.',
str(ve)
)
raise ve
def test_normalize_array_list(self):
normalized_array = raster_helpers.normalize_array_list([channel0, channel1, channel2])
hash_output = hash_calculate(normalized_array)
assert hash_output == b'+6IbhIpyb3vPElTgqqPkQdIR0umf4uFP2c7t5IaBVvI='
test_norm_list_output2 = raster_helpers.normalize_array_list(
[channel0, channel1, channel2], exaggerations_list=[2.0, 3.0, 5.0])
hash_variable2 = hash_calculate(test_norm_list_output2)
assert hash_variable2 == b'yYCYWCKO3i8NYsWk/wgYOzSRRLSLUprEs7mChJkdL+A='
def test_normalize_array_list_value_error(self):
with self.assertRaises(ValueError):
try:
raster_helpers.normalize_array_list([])
except ValueError as ve:
self.assertEqual("input list can't be empty:[].", str(ve))
raise ve
def test_check_empty_array(self):
a = np.zeros((10, 10))
b = np.ones((10, 10))
c = np.ones((10, 10)) * 2
d = np.zeros((10, 10))
d[1, 1] = np.nan
e = np.ones((10, 10)) * 3
e[1, 1] = np.nan
self.assertTrue(raster_helpers.check_empty_array(a, 999))
self.assertTrue(raster_helpers.check_empty_array(b, 0))
self.assertTrue(raster_helpers.check_empty_array(c, 2))
self.assertTrue(raster_helpers.check_empty_array(d, 0))
self.assertTrue(raster_helpers.check_empty_array(e, 3))
self.assertFalse(raster_helpers.check_empty_array(z, 3))
def test_get_nextzen_terrain_rgb_formula(self):
output = raster_helpers.get_nextzen_terrain_rgb_formula(channel0, channel1, channel2)
hash_output = hash_calculate(output)
assert hash_output == b'3KJ81YKmQRdccRZARbByfwo1iMVLj8xxz9mfsWki/qA='
def test_get_mapbox__terrain_rgb_formula(self):
output = raster_helpers.get_mapbox__terrain_rgb_formula(channel0, channel1, channel2)
hash_output = hash_calculate(output)
assert hash_output == b'RU7CcoKoR3Fkh5LE+m48DHRVUy/vGq6UgfOFUMXx07M='
def test_get_raster_terrain_rgb_like(self):
from samgis.utilities.type_hints import XYZTerrainProvidersNames
arr_input = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=True)
output_nextzen = raster_helpers.get_raster_terrain_rgb_like(
arr_input, XYZTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME)
hash_nextzen = hash_calculate(output_nextzen)
assert hash_nextzen == b'+o2OTJliJkkBoqiAIGnhJ4s0xoLQ4MxHOvevLhNxysE='
output_mapbox = raster_helpers.get_raster_terrain_rgb_like(
arr_input, XYZTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME)
hash_mapbox = hash_calculate(output_mapbox)
assert hash_mapbox == b'zWmekyKrpnmHnuDACnveCJl+o4GuhtHJmGlRDVwsce4='
|