File size: 11,689 Bytes
0914710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import unittest
from unittest.mock import patch
import numpy as np

from samgis_core.utilities.utilities import hash_calculate
from samgis.io import raster_helpers


def get_three_channels(size=5, param1=1000, param2=3, param3=-88):
    arr_base = np.arange(size*size).reshape(size, size) / size**2
    channel_0 = arr_base * param1
    channel_1 = arr_base * param2
    channel_2 = arr_base * param3
    return channel_0, channel_1, channel_2


def helper_bell(size=10, param1=0.1, param2=2):
    x = np.linspace(-size, size, num=size**2)
    y = np.linspace(-size, size, num=size**2)
    x, y = np.meshgrid(x, y)
    return np.exp(-param1 * x ** param2 - param1 * y ** param2)


arr_5x5x5 = np.arange(125).reshape((5, 5, 5)) / 25
arr = np.arange(25).resize((5, 5))
channel0, channel1, channel2 = get_three_channels()
z = helper_bell()
slope_z_cellsize3, curvature_z_cellsize3 = raster_helpers.get_slope_curvature(z, slope_cellsize=3)


class Test(unittest.TestCase):

    def test_get_rgb_prediction_image_real(self):
        output = raster_helpers.get_rgb_prediction_image(z, slope_cellsize=61, invert_image=True)
        hash_output = hash_calculate(output)
        assert hash_output == b'QpQ9yxgCLw9cf3klNFKNFXIDHaSkuiZxkbpeQApR8pA='
        output = raster_helpers.get_rgb_prediction_image(z, slope_cellsize=61, invert_image=False)
        hash_output = hash_calculate(output)
        assert hash_output == b'Y+iXO9w/sKzNVOw2rBh2JrVGJUFRqaa8/0F9hpevmLs='

    @patch.object(raster_helpers, "get_slope_curvature")
    @patch.object(raster_helpers, "normalize_array_list")
    @patch.object(raster_helpers, "get_rgb_image")
    def test_get_rgb_prediction_image_mocked(self, get_rgb_image_mocked, normalize_array_list, get_slope_curvature):
        local_arr = np.array(z * 100, dtype=np.uint8)

        get_slope_curvature.return_value = slope_z_cellsize3, curvature_z_cellsize3
        normalize_array_list.side_effect = None
        get_rgb_image_mocked.return_value = np.bitwise_not(local_arr)
        output = raster_helpers.get_rgb_prediction_image(local_arr, slope_cellsize=61, invert_image=True)
        hash_output = hash_calculate(output)
        assert hash_output == b'BPIyVH64RgVunj42EuQAx4/v59Va8ZAjcMnuiGNqTT0='
        get_rgb_image_mocked.return_value = local_arr
        output = raster_helpers.get_rgb_prediction_image(local_arr, slope_cellsize=61, invert_image=False)
        hash_output = hash_calculate(output)
        assert hash_output == b'XX54sdLQQUrhkUHT6ikQZYSloMYDSfh/AGITDq6jnRM='

    @patch.object(raster_helpers, "get_slope_curvature")
    def test_get_rgb_prediction_image_value_error(self, get_slope_curvature):
        msg = "this is a value error"
        get_slope_curvature.side_effect = ValueError(msg)

        with self.assertRaises(ValueError):
            try:
                raster_helpers.get_rgb_prediction_image(arr, slope_cellsize=3)
            except ValueError as ve:
                self.assertEqual(str(ve), msg)
                raise ve

    def test_get_rgb_image(self):
        output = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=True)
        hash_output = hash_calculate(output)
        assert hash_output == b'YVnRWla5Ptfet6reSfM+OEIsGytLkeso6X+CRs34YHk='
        output = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=False)
        hash_output = hash_calculate(output)
        assert hash_output == b'LC/kIZGUZULSrwwSXCeP1My2spTZdW9D7LH+tltwERs='

    def test_get_rgb_image_value_error_1(self):
        with self.assertRaises(ValueError):
            try:
                raster_helpers.get_rgb_image(arr_5x5x5, arr_5x5x5, arr_5x5x5, invert_image=True)
            except ValueError as ve:
                self.assertEqual(f"arr_size, wrong type:{type(arr_5x5x5)} or arr_size:{arr_5x5x5.shape}.", str(ve))
                raise ve

    def test_get_rgb_image_value_error2(self):
        arr_0 = np.arange(25).reshape((5, 5))
        arr_1 = np.arange(4).reshape((2, 2))
        with self.assertRaises(ValueError):
            try:
                raster_helpers.get_rgb_image(arr_0, arr_1, channel2, invert_image=True)
            except ValueError as ve:
                self.assertEqual('could not broadcast input array from shape (2,2) into shape (5,5)', str(ve))
                raise ve

    def test_get_slope_curvature(self):
        slope_output, curvature_output = raster_helpers.get_slope_curvature(z, slope_cellsize=3)
        hash_curvature = hash_calculate(curvature_output)
        hash_slope = hash_calculate(slope_output)
        assert hash_curvature == b'LAL9JFOjJP9D6X4X3fVCpnitx9VPM9drS5YMHwMZ3iE='
        assert hash_slope == b'IYf6x4G0lmR47j6HRS5kUYWdtmimhLz2nak8py75nwc='

    def test_get_slope_curvature_value_error(self):
        from samgis.io import raster_helpers

        with self.assertRaises(ValueError):
            try:
                raster_helpers.get_slope_curvature(np.array(1), slope_cellsize=3)
            except ValueError as ve:
                self.assertEqual('not enough values to unpack (expected 2, got 0)', str(ve))
                raise ve

    def test_calculate_slope(self):
        slope_output = raster_helpers.calculate_slope(z, cell_size=3)
        hash_output = hash_calculate(slope_output)
        assert hash_output == b'IYf6x4G0lmR47j6HRS5kUYWdtmimhLz2nak8py75nwc='

    def test_calculate_slope_value_error(self):
        with self.assertRaises(ValueError):
            try:
                raster_helpers.calculate_slope(np.array(1), cell_size=3)
            except ValueError as ve:
                self.assertEqual('not enough values to unpack (expected 2, got 0)', str(ve))
                raise ve

    def test_normalize_array(self):
        def check_ndarrays_almost_equal(cls, arr1, arr2, places, check_type="float", check_ndiff=1):
            count_abs_diff = 0
            for list00, list01 in zip(arr1.tolist(), arr2.tolist()):
                for el00, el01 in zip(list00, list01):
                    ndiff = abs(el00 - el01)
                    if el00 != el01:
                        count_abs_diff += 1
                    if check_type == "float":
                        cls.assertAlmostEqual(el00, el01, places=places)
                    cls.assertTrue(ndiff < check_ndiff)
            print("count_abs_diff:", count_abs_diff)

        normalized_array = raster_helpers.normalize_array(z)
        hash_output = hash_calculate(normalized_array)
        assert hash_output == b'MPkQwiiQa5NxL7LDvCS9V143YUEJT/Qh1aNEKc/Ehvo='

        mult_variable = 3.423
        test_array_input = np.arange(256).reshape((16, 16))
        test_array_output = raster_helpers.normalize_array(test_array_input * mult_variable)
        check_ndarrays_almost_equal(self, test_array_output, test_array_input, places=8)

        test_array_output1 = raster_helpers.normalize_array(test_array_input * mult_variable, high=128, norm_type="int")
        o = np.arange(256).reshape((16, 16)) / 2
        expected_array_output1 = o.astype(int)
        check_ndarrays_almost_equal(
            self, test_array_output1, expected_array_output1, places=2, check_type="int", check_ndiff=2)

    @patch.object(np, "nanmin")
    @patch.object(np, "nanmax")
    def test_normalize_array_floating_point_error_mocked(self, nanmax_mocked, nanmin_mocked):
        nanmax_mocked.return_value = 100
        nanmin_mocked.return_value = 100

        with self.assertRaises(ValueError):
            try:
                raster_helpers.normalize_array(
                    np.arange(25).reshape((5, 5))
                )
            except ValueError as ve:
                self.assertEqual(
                    "normalize_array:::h_arr_max:100,h_min_arr:100,fe:divide by zero encountered in divide.",
                    str(ve)
                )
                raise ve

    @patch.object(np, "nanmin")
    @patch.object(np, "nanmax")
    def test_normalize_array_exception_error_mocked(self, nanmax_mocked, nanmin_mocked):
        nanmax_mocked.return_value = 100
        nanmin_mocked.return_value = np.NaN

        with self.assertRaises(ValueError):
            try:
                raster_helpers.normalize_array(
                    np.arange(25).reshape((5, 5))
                )
            except ValueError as ve:
                self.assertEqual("cannot convert float NaN to integer", str(ve))
                raise ve

    def test_normalize_array_value_error(self):
        with self.assertRaises(ValueError):
            try:
                raster_helpers.normalize_array(
                    np.zeros((5, 5))
                )
            except ValueError as ve:
                self.assertEqual(
                    "normalize_array::empty array '',h_min_arr:0.0,h_arr_max:0.0,h_diff:0.0, " 'dtype:float64.',
                    str(ve)
                )
                raise ve

    def test_normalize_array_list(self):
        normalized_array = raster_helpers.normalize_array_list([channel0, channel1, channel2])
        hash_output = hash_calculate(normalized_array)
        assert hash_output == b'+6IbhIpyb3vPElTgqqPkQdIR0umf4uFP2c7t5IaBVvI='

        test_norm_list_output2 = raster_helpers.normalize_array_list(
            [channel0, channel1, channel2], exaggerations_list=[2.0, 3.0, 5.0])
        hash_variable2 = hash_calculate(test_norm_list_output2)
        assert hash_variable2 == b'yYCYWCKO3i8NYsWk/wgYOzSRRLSLUprEs7mChJkdL+A='

    def test_normalize_array_list_value_error(self):
        with self.assertRaises(ValueError):
            try:
                raster_helpers.normalize_array_list([])
            except ValueError as ve:
                self.assertEqual("input list can't be empty:[].", str(ve))
                raise ve

    def test_check_empty_array(self):
        a = np.zeros((10, 10))
        b = np.ones((10, 10))
        c = np.ones((10, 10)) * 2
        d = np.zeros((10, 10))
        d[1, 1] = np.nan
        e = np.ones((10, 10)) * 3
        e[1, 1] = np.nan

        self.assertTrue(raster_helpers.check_empty_array(a, 999))
        self.assertTrue(raster_helpers.check_empty_array(b, 0))
        self.assertTrue(raster_helpers.check_empty_array(c, 2))
        self.assertTrue(raster_helpers.check_empty_array(d, 0))
        self.assertTrue(raster_helpers.check_empty_array(e, 3))
        self.assertFalse(raster_helpers.check_empty_array(z, 3))

    def test_get_nextzen_terrain_rgb_formula(self):
        output = raster_helpers.get_nextzen_terrain_rgb_formula(channel0, channel1, channel2)
        hash_output = hash_calculate(output)
        assert hash_output == b'3KJ81YKmQRdccRZARbByfwo1iMVLj8xxz9mfsWki/qA='

    def test_get_mapbox__terrain_rgb_formula(self):
        output = raster_helpers.get_mapbox__terrain_rgb_formula(channel0, channel1, channel2)
        hash_output = hash_calculate(output)
        assert hash_output == b'RU7CcoKoR3Fkh5LE+m48DHRVUy/vGq6UgfOFUMXx07M='

    def test_get_raster_terrain_rgb_like(self):
        from samgis.utilities.type_hints import XYZTerrainProvidersNames

        arr_input = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=True)
        output_nextzen = raster_helpers.get_raster_terrain_rgb_like(
            arr_input, XYZTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME)
        hash_nextzen = hash_calculate(output_nextzen)
        assert hash_nextzen == b'+o2OTJliJkkBoqiAIGnhJ4s0xoLQ4MxHOvevLhNxysE='
        output_mapbox = raster_helpers.get_raster_terrain_rgb_like(
            arr_input, XYZTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME)
        hash_mapbox = hash_calculate(output_mapbox)
        assert hash_mapbox == b'zWmekyKrpnmHnuDACnveCJl+o4GuhtHJmGlRDVwsce4='