samgis-lisa-on-zero / dockerfiles /dockerfile-lisa-predictions
alessandro trinca tornidor
[feat] prepare entire docker build with nvidia GPU on hf space cloning https://huggingface.co/spaces/aletrn/samgis
0914710
raw
history blame
1.6 kB
FROM registry.gitlab.com/aletrn/gis-lisa-base:1.2.2
# Include global arg in this stage of the build
ARG LAMBDA_TASK_ROOT="/var/task"
ARG PYTHONPATH="${LAMBDA_TASK_ROOT}:${PYTHONPATH}:/usr/local/lib/python3/dist-packages"
ENV VIRTUAL_ENV=${LAMBDA_TASK_ROOT}/.venv \
PATH="${LAMBDA_TASK_ROOT}/.venv/bin:$PATH"
ENV IS_AWS_LAMBDA=""
# Set working directory to function root directory
WORKDIR ${LAMBDA_TASK_ROOT}
ADD https://github.com/AkihiroSuda/clone3-workaround/releases/download/v1.0.0/clone3-workaround.x86_64 /clone3-workaround
RUN chmod 755 /clone3-workaround
SHELL ["/clone3-workaround","/bin/sh", "-c"]
COPY scripts ${LAMBDA_TASK_ROOT}/scripts
COPY samgis ${LAMBDA_TASK_ROOT}/samgis
COPY wrappers ${LAMBDA_TASK_ROOT}/wrappers
RUN ls -l /usr/bin/which
RUN /usr/bin/which python
RUN python -v
RUN echo "PYTHONPATH: ${PYTHONPATH}."
RUN echo "PATH: ${PATH}."
RUN echo "LAMBDA_TASK_ROOT: ${LAMBDA_TASK_ROOT}."
RUN ls -l ${LAMBDA_TASK_ROOT}
RUN ls -ld ${LAMBDA_TASK_ROOT}
RUN ls -l ${LAMBDA_TASK_ROOT}/machine_learning_models
RUN python -c "import sys; print(sys.path)"
RUN python -c "import cv2"
RUN python -c "import fastapi"
RUN python -c "import geopandas"
RUN python -c "import loguru"
RUN python -c "import onnxruntime"
RUN python -c "import rasterio"
RUN python -c "import uvicorn"
RUN df -h
RUN ls -l ${LAMBDA_TASK_ROOT}/samgis/
RUN ls -l ${LAMBDA_TASK_ROOT}/wrappers/
RUN ls -l ${LAMBDA_TASK_ROOT}/static/
RUN ls -l ${LAMBDA_TASK_ROOT}/static/dist
RUN ls -l ${LAMBDA_TASK_ROOT}/static/node_modules
CMD ["uvicorn", "wrappers.fastapi_wrapper:app", "--host", "0.0.0.0", "--port", "7860"]