Spaces:
Sleeping
Sleeping
"""functions useful to convert to/from latitude-longitude coordinates to pixel image coordinates""" | |
from samgis_core.utilities.type_hints import TupleFloat, TupleFloatAny | |
from samgis_lisa_on_cuda import app_logger | |
from samgis_lisa_on_cuda.utilities.constants import TILE_SIZE, EARTH_EQUATORIAL_RADIUS | |
from samgis_lisa_on_cuda.utilities.type_hints import ImagePixelCoordinates | |
from samgis_lisa_on_cuda.utilities.type_hints import LatLngDict | |
def _get_latlng2pixel_projection(latlng: LatLngDict) -> ImagePixelCoordinates: | |
from math import log, pi, sin | |
app_logger.debug(f"latlng: {type(latlng)}, value:{latlng}.") | |
app_logger.debug(f'latlng lat: {type(latlng.lat)}, value:{latlng.lat}.') | |
app_logger.debug(f'latlng lng: {type(latlng.lng)}, value:{latlng.lng}.') | |
try: | |
sin_y: float = sin(latlng.lat * pi / 180) | |
app_logger.debug(f"sin_y, #1:{sin_y}.") | |
sin_y = min(max(sin_y, -0.9999), 0.9999) | |
app_logger.debug(f"sin_y, #2:{sin_y}.") | |
x = TILE_SIZE * (0.5 + latlng.lng / 360) | |
app_logger.debug(f"x:{x}.") | |
y = TILE_SIZE * (0.5 - log((1 + sin_y) / (1 - sin_y)) / (4 * pi)) | |
app_logger.debug(f"y:{y}.") | |
return {"x": x, "y": y} | |
except Exception as e_get_latlng2pixel_projection: | |
app_logger.error(f'args type:{type(latlng)}, {latlng}.') | |
app_logger.exception(f'e_get_latlng2pixel_projection:{e_get_latlng2pixel_projection}.', exc_info=True) | |
raise e_get_latlng2pixel_projection | |
def _get_point_latlng_to_pixel_coordinates(latlng: LatLngDict, zoom: int | float) -> ImagePixelCoordinates: | |
from math import floor | |
try: | |
world_coordinate: ImagePixelCoordinates = _get_latlng2pixel_projection(latlng) | |
app_logger.debug(f"world_coordinate:{world_coordinate}.") | |
scale: int = pow(2, zoom) | |
app_logger.debug(f"scale:{scale}.") | |
return ImagePixelCoordinates( | |
x=floor(world_coordinate["x"] * scale), | |
y=floor(world_coordinate["y"] * scale) | |
) | |
except Exception as e_format_latlng_to_pixel_coordinates: | |
app_logger.error(f'latlng type:{type(latlng)}, {latlng}.') | |
app_logger.error(f'zoom type:{type(zoom)}, {zoom}.') | |
app_logger.exception(f'e_format_latlng_to_pixel_coordinates:{e_format_latlng_to_pixel_coordinates}.', | |
exc_info=True) | |
raise e_format_latlng_to_pixel_coordinates | |
def get_latlng_to_pixel_coordinates( | |
latlng_origin_ne: LatLngDict, | |
latlng_origin_sw: LatLngDict, | |
latlng_current_point: LatLngDict, | |
zoom: int | float, | |
k: str | |
) -> ImagePixelCoordinates: | |
""" | |
Parse the input request lambda event | |
Args: | |
latlng_origin_ne: NE latitude-longitude origin point | |
latlng_origin_sw: SW latitude-longitude origin point | |
latlng_current_point: latitude-longitude prompt point | |
zoom: Level of detail | |
k: prompt type | |
Returns: | |
ImagePixelCoordinates: pixel image coordinate point | |
""" | |
app_logger.debug(f"latlng_origin - {k}: {type(latlng_origin_ne)}, value:{latlng_origin_ne}.") | |
app_logger.debug(f"latlng_current_point - {k}: {type(latlng_current_point)}, value:{latlng_current_point}.") | |
latlng_map_origin_ne = _get_point_latlng_to_pixel_coordinates(latlng_origin_ne, zoom) | |
latlng_map_origin_sw = _get_point_latlng_to_pixel_coordinates(latlng_origin_sw, zoom) | |
latlng_map_current_point = _get_point_latlng_to_pixel_coordinates(latlng_current_point, zoom) | |
diff_coord_x = abs(latlng_map_origin_sw["x"] - latlng_map_current_point["x"]) | |
diff_coord_y = abs(latlng_map_origin_ne["y"] - latlng_map_current_point["y"]) | |
point = ImagePixelCoordinates(x=diff_coord_x, y=diff_coord_y) | |
app_logger.debug(f"point type - {k}: {point}.") | |
return point | |
def _from4326_to3857(lat: float, lon: float) -> TupleFloat or TupleFloatAny: | |
from math import radians, log, tan | |
x_tile: float = radians(lon) * EARTH_EQUATORIAL_RADIUS | |
y_tile: float = log(tan(radians(45 + lat / 2.0))) * EARTH_EQUATORIAL_RADIUS | |
return x_tile, y_tile | |
def _deg2num(lat: float, lon: float, zoom: int): | |
from math import radians, pi, asinh, tan | |
n = 2 ** zoom | |
x_tile = ((lon + 180) / 360 * n) | |
y_tile = (1 - asinh(tan(radians(lat))) / pi) * n / 2 | |
return x_tile, y_tile | |