Spaces:
Sleeping
Sleeping
alessandro trinca tornidor
commited on
Commit
•
7d48fbe
1
Parent(s):
d93d81f
[feat] add option to dump temp images during ML recognition operations
Browse files
README.md
CHANGED
@@ -133,6 +133,7 @@ It's possible to use the project in a bare metal installation (not within a dock
|
|
133 |
export PYTORCH_KERNEL_CACHE_PATH="$HOME/.cache/torch/kernels"
|
134 |
export FASTAPI_STATIC="$HOME/workspace/samgis-lisa-on-cuda/static"
|
135 |
export VIS_OUTPUT="$HOME/workspace/samgis-lisa-on-cuda/vis_output"
|
|
|
136 |
```
|
137 |
|
138 |
- execute the script `baremetal_entrypoint.sh` instead than `docker_entrypoint.sh`.
|
|
|
133 |
export PYTORCH_KERNEL_CACHE_PATH="$HOME/.cache/torch/kernels"
|
134 |
export FASTAPI_STATIC="$HOME/workspace/samgis-lisa-on-cuda/static"
|
135 |
export VIS_OUTPUT="$HOME/workspace/samgis-lisa-on-cuda/vis_output"
|
136 |
+
export WRITE_TMP_ON_DISK=${VIS_OUTPUT}
|
137 |
```
|
138 |
|
139 |
- execute the script `baremetal_entrypoint.sh` instead than `docker_entrypoint.sh`.
|
samgis_lisa_on_cuda/io/raster_helpers.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
"""helpers for computer vision duties"""
|
2 |
import numpy as np
|
3 |
from numpy import ndarray, bitwise_not
|
|
|
4 |
|
|
|
5 |
from samgis_lisa_on_cuda import app_logger
|
|
|
6 |
from samgis_lisa_on_cuda.utilities.type_hints import XYZTerrainProvidersNames
|
7 |
|
8 |
|
@@ -292,3 +295,37 @@ def check_empty_array(arr: ndarray, val: float) -> bool:
|
|
292 |
check5 = np.array_equal(arr_check5_tmp, arr_check5)
|
293 |
app_logger.debug(f"array checks:{check1}, {check2}, {check3}, {check4}, {check5}.")
|
294 |
return check1 or check2 or check3 or check4 or check5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""helpers for computer vision duties"""
|
2 |
import numpy as np
|
3 |
from numpy import ndarray, bitwise_not
|
4 |
+
from rasterio import open as rasterio_open
|
5 |
|
6 |
+
from samgis_lisa_on_cuda import PROJECT_ROOT_FOLDER
|
7 |
from samgis_lisa_on_cuda import app_logger
|
8 |
+
from samgis_lisa_on_cuda.utilities.constants import OUTPUT_CRS_STRING
|
9 |
from samgis_lisa_on_cuda.utilities.type_hints import XYZTerrainProvidersNames
|
10 |
|
11 |
|
|
|
295 |
check5 = np.array_equal(arr_check5_tmp, arr_check5)
|
296 |
app_logger.debug(f"array checks:{check1}, {check2}, {check3}, {check4}, {check5}.")
|
297 |
return check1 or check2 or check3 or check4 or check5
|
298 |
+
|
299 |
+
|
300 |
+
def write_raster_png(arr, transform, prefix: str, suffix: str, folder_output_path="/tmp"):
|
301 |
+
from pathlib import Path
|
302 |
+
from rasterio.plot import reshape_as_raster
|
303 |
+
|
304 |
+
output_filename = Path(folder_output_path) / f"{prefix}_{suffix}.png"
|
305 |
+
|
306 |
+
with rasterio_open(
|
307 |
+
output_filename, 'w', driver='PNG',
|
308 |
+
height=arr.shape[0],
|
309 |
+
width=arr.shape[1],
|
310 |
+
count=3,
|
311 |
+
dtype=str(arr.dtype),
|
312 |
+
crs=OUTPUT_CRS_STRING,
|
313 |
+
transform=transform) as dst:
|
314 |
+
dst.write(reshape_as_raster(arr))
|
315 |
+
app_logger.info(f"written:{output_filename} as PNG, use {OUTPUT_CRS_STRING} as CRS.")
|
316 |
+
|
317 |
+
|
318 |
+
def write_raster_tiff(arr, transform, prefix: str, suffix: str, folder_output_path="/tmp"):
|
319 |
+
from pathlib import Path
|
320 |
+
output_filename = Path(folder_output_path) / f"{prefix}_{suffix}.tiff"
|
321 |
+
|
322 |
+
with rasterio_open(
|
323 |
+
output_filename, 'w', driver='GTiff',
|
324 |
+
height=arr.shape[0],
|
325 |
+
width=arr.shape[1],
|
326 |
+
count=1,
|
327 |
+
dtype=str(arr.dtype),
|
328 |
+
crs=OUTPUT_CRS_STRING,
|
329 |
+
transform=transform) as dst:
|
330 |
+
dst.write(arr, 1)
|
331 |
+
app_logger.info(f"written:{output_filename} as TIFF, use {OUTPUT_CRS_STRING} as CRS.")
|
samgis_lisa_on_cuda/prediction_api/lisa.py
CHANGED
@@ -1,10 +1,15 @@
|
|
|
|
|
|
|
|
|
|
1 |
from samgis_lisa_on_cuda import app_logger
|
2 |
from samgis_lisa_on_cuda.io.geo_helpers import get_vectorized_raster_as_geojson
|
|
|
3 |
from samgis_lisa_on_cuda.io.tms2geotiff import download_extent
|
4 |
from samgis_lisa_on_cuda.prediction_api.global_models import models_dict
|
5 |
from samgis_lisa_on_cuda.utilities.constants import DEFAULT_URL_TILES
|
6 |
-
|
7 |
-
|
8 |
|
9 |
|
10 |
def lisa_predict(
|
@@ -32,6 +37,8 @@ def lisa_predict(
|
|
32 |
Returns:
|
33 |
Affine transform
|
34 |
"""
|
|
|
|
|
35 |
app_logger.info("start lisa inference...")
|
36 |
if models_dict[inference_function_name_key]["inference"] is None:
|
37 |
app_logger.info(f"missing inference function {inference_function_name_key}, instantiating it now!")
|
@@ -44,9 +51,19 @@ def lisa_predict(
|
|
44 |
pt0, pt1 = bbox
|
45 |
app_logger.info(f"tile_source: {source}: downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.")
|
46 |
img, transform = download_extent(w=pt1[1], s=pt1[0], e=pt0[1], n=pt0[0], zoom=zoom, source=source)
|
47 |
-
|
48 |
app_logger.info(
|
49 |
f"img type {type(img)} with shape/size:{img.size}, transform type: {type(transform)}, transform:{transform}.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
_, mask, output_string = inference_fn(prompt, img)
|
52 |
# app_logger.info(f"created {n_predictions} masks, preparing conversion to geojson...")
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
from lisa_on_cuda.utils import app_helpers
|
4 |
+
from samgis_core.utilities.type_hints import llist_float, dict_str_int
|
5 |
from samgis_lisa_on_cuda import app_logger
|
6 |
from samgis_lisa_on_cuda.io.geo_helpers import get_vectorized_raster_as_geojson
|
7 |
+
from samgis_lisa_on_cuda.io.raster_helpers import write_raster_png, write_raster_tiff
|
8 |
from samgis_lisa_on_cuda.io.tms2geotiff import download_extent
|
9 |
from samgis_lisa_on_cuda.prediction_api.global_models import models_dict
|
10 |
from samgis_lisa_on_cuda.utilities.constants import DEFAULT_URL_TILES
|
11 |
+
|
12 |
+
msg_write_tmp_on_disk = "found option to write images and geojson output..."
|
13 |
|
14 |
|
15 |
def lisa_predict(
|
|
|
37 |
Returns:
|
38 |
Affine transform
|
39 |
"""
|
40 |
+
from os import getenv
|
41 |
+
|
42 |
app_logger.info("start lisa inference...")
|
43 |
if models_dict[inference_function_name_key]["inference"] is None:
|
44 |
app_logger.info(f"missing inference function {inference_function_name_key}, instantiating it now!")
|
|
|
51 |
pt0, pt1 = bbox
|
52 |
app_logger.info(f"tile_source: {source}: downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.")
|
53 |
img, transform = download_extent(w=pt1[1], s=pt1[0], e=pt0[1], n=pt0[0], zoom=zoom, source=source)
|
|
|
54 |
app_logger.info(
|
55 |
f"img type {type(img)} with shape/size:{img.size}, transform type: {type(transform)}, transform:{transform}.")
|
56 |
+
folder_write_tmp_on_disk = getenv("WRITE_TMP_ON_DISK", "")
|
57 |
+
if bool(folder_write_tmp_on_disk):
|
58 |
+
now = datetime.now().strftime('%Y%m%d_%H%M%S')
|
59 |
+
prefix = f"w{pt1[1]},s{pt1[0]},e{pt0[1]},n{pt0[0]}_"
|
60 |
+
app_logger.info(msg_write_tmp_on_disk + f"with coords {prefix}, shape:{img.shape}, {len(img.shape)}.")
|
61 |
+
if img.shape and len(img.shape) == 2:
|
62 |
+
write_raster_tiff(img, transform, f"{prefix}_{now}_", f"raw_tiff", folder_write_tmp_on_disk)
|
63 |
+
if img.shape and len(img.shape) == 3 and img.shape[2] == 3:
|
64 |
+
write_raster_png(img, transform, f"{prefix}_{now}_", f"raw_img", folder_write_tmp_on_disk)
|
65 |
+
else:
|
66 |
+
app_logger.info("keep all temp data in memory...")
|
67 |
|
68 |
_, mask, output_string = inference_fn(prompt, img)
|
69 |
# app_logger.info(f"created {n_predictions} masks, preparing conversion to geojson...")
|